Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Polym Mater ; 6(10): 5618-5629, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38807950

RESUMO

This work introduces the encapsulation of hexamethylene diisocyanate derivatives (HDI, TriHDI, and PHDI) with the biodegradable polymer poly(butylene adipate-co-terephthalate) (PBAT) through a solvent evaporation method. These microcapsules (MCs) were then employed in adhesive formulations for footwear. Moreover, MCs containing PHDI were produced in a closed vessel, demonstrating the potential for recovering and reusing organic solvents for the first time. The MCs were achieved with an isocyanate payload reaching up to 68 wt %, displaying a spherical shape, a core-shell structure, and thin walls without holes or cracks. The application of MCs as cross-linking agents for adhesives was evaluated following industry standards. The adhesives' strength surpassed the minimum requirement by a significant margin. Creep tests demonstrated that the formulation with MCs exhibits superior thermostability. Furthermore, the formulation with MCs-PHDI presented the best results reported to date for this type of system, as no displacement was observed in the bonded substrates. Environmental assessment indicates that adhesives with MCs have higher global warming potential (+16.2%) and energy consumption (+10.8%) than the standard commercial adhesives, but under alternative realistic scenarios, the differences can be insignificant. Therefore, adhesive formulations incorporating MCs promise to be on par with traditional adhesive systems regarding environmental impacts while providing benefits such as improved and safe handling of isocyanates and excellent bonding effectiveness.

2.
Sci Total Environ ; 892: 164629, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285989

RESUMO

For the past two decades, with the increase in plastic consumption came a rise in plastic waste, with the bulk of it ending up in landfills, incinerated, recycled or leaking into the environment, especially in aquatic ecosystems. Plastic waste poses a significant environmental threat and a wealth issue due to its non-biodegradability and recalcitrant nature. Polyethylene (PE) remains one of the major utilized polymers in different applications amid all the other types because of its low production costs, simplistic nature prone to be modified and historically predominant researched material. Since the common methods for plastic disposal are troubled by limitations, there is a growing need for more appropriate and environment friendly methods alternatives. This study highlights several ways that can be used to assist PE (bio)degradation and mitigate its waste impact. Biodegradation (microbiological activity driven) and photodegradation (radiation driven) are the most promising for PE waste control. The shape of the material (powder, film, particles, etc.), the composition of medium, additives and pH, temperature and incubation or exposure times contribute to plastic degradation efficiency. Moreover, radiation pretreatment can enhance the biodegradability of PE, providing a promising approach to fighting plastic pollution. This paper relates the most significant results regarding PE degradation studies followed by weight loss analysis, surface morphology changes, oxidation degree (for photodegradation) and mechanical properties assessment. All combined strategies are very promising to minimize the polyethylene impact. However, there is still a long way to go through. The degradation kinetics is still low for the currently available biotic or abiotic processes, and complete mineralization is thoroughly unseen.


Assuntos
Ecossistema , Polietileno , Polietileno/metabolismo , Plásticos/química , Polímeros , Biodegradação Ambiental
3.
RSC Adv ; 13(19): 12951-12965, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37114025

RESUMO

A novel versatile, easily recoverable, and recyclable material platform is herein presented, consisting of multicomponent oxide microspheres, of silica-titania and silica-titania-hafnia composition, with tailored interconnected macroporosity (MICROSCAFS®). When functionalized or loaded with desired species, they are potential enablers of emerging applications in environmental remediation, among other fields. We combine emulsion templating for the spherical shape of the particles, with an adapted sol-gel technique involving polymerization-induced phase separation by spinodal decomposition. An advantage of our method regards the employed mix of precursors, which prevents the use of specific gelation additives and porogens and allows a high reproducibility of MICROSCAFS®. We present insight into their formation mechanism using cryo-scanning electron microscopy, and a systematic study of the effect of multiple synthesis parameters on the MICROSCAFS® size and porosity. The composition of the silicon precursors has the most significant effect on fine-tuning the pores size, ranging from the nanometer to the micron scale. Mechanical properties are correlated with morphological features. Larger macroporosity (68% open porosity, estimated by X-ray computed tomography) leads to less stiffness, higher elastic recovery, and compressibility values up to 42%. We believe this study creates a base for consistent custom MICROSCAFS® production, with a design for various future applications.

4.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771965

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT), a biodegradable flexible, and tough polymer is herein used, for the first time, to encapsulate and protect isocyanate derivatives. Isocyanates are essential building blocks widely employed in the chemical industry for the production of high-performing materials. Microencapsulation of isocyanates eliminates the risks associated with their direct handling and protects them from moisture. In light of this, and having in mind eco-innovative products and sustainability, we present a straightforward process to encapsulate isophorone diisocyanate (IPDI) using this biodegradable polymer. Spherical and core-shell microcapsules (MCs) were produced by an emulsion system combined with the solvent evaporation method. The MCs present a regular surface, without holes or cracks, with a thin shell and high isocyanate loadings, up to 79 wt%. Additionally, the MCs showed very good isocyanate protection if not dispersed in organic or aqueous solutions. Effects of various process parameters were systematically studied, showing that a higher stirring speed (1000 rpm) and emulsifier amount (2.5 g), as well as a smaller PBAT amount (1.60 g), lead to smaller MCs and narrower size distribution.

5.
Polymers (Basel) ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679282

RESUMO

We report on the stabilization of an oil-in-water (O/W) emulsion to, combined with interfacial polymerization, produce core-shell polyurea microcapsules (MCs) containing isophorone diisocyanate (IPDI). These will act as crosslinkers for mono-component adhesives. The emulsion stabilization was evaluated using three types of stabilizers, a polysaccharide (gum arabic) emulsifier, a silicone surfactant (Dabco®DC193), a rheology modifier (polyvinyl alcohol), and their combinations. Emulsion sedimentation studies, optical microscopy observation, and scanning electron microscopy enabled us to assess the emulsions stability and droplet size distribution and correlate them to the MCs morphology. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed the MCs composition and enabled us to evaluate the encapsulation yield. All stabilizers, except DC193, led to spherical, loose, and core-shelled MCs. The rheology modifier, which increases the continuous phase viscosity, reduces the emulsion droplets sedimentation, keeping their size constant during the MCs' synthesis. This allowed us to obtain good quality MCs, with a smaller average diameter, of approximately 40.9 µm mode, a narrower size distribution and 46 wt% of encapsulated IPDI. We show the importance of the emulsion stability to tune the MCs morphology, size, and size distribution, which are critical for improved homogeneity and performance when used, e.g., in natural and synthetic adhesive formulations industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA