Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Opt Express ; 4(4): 635-51, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23577297

RESUMO

Phantom and mouse experiments of time-domain fluorescence tomography were conducted to demonstrate the total light approach which was previously proposed by authors. The total light approach reduces the computation time to solve the forward model for light propagation. Time-resolved temporal profiles were acquired for cylindrical phantoms having single or double targets containing indocyanine green (ICG) solutions. The reconstructed images of ICG concentration reflected the true distributions of ICG concentration with a spatial resolution of about 10 mm. In vivo experiments were conducted using a mouse in which an ICG capsule was embedded beneath the skin in the abdomen. The reconstructed image of the ICG concentration again reflected the true distribution of ICG although artifacts due to autofluorescence appeared in the vicinity of the skin. The effectiveness of the total light approach was demonstrated by the phantom and mouse experiments.

2.
Opt Express ; 16(19): 15268-85, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18795065

RESUMO

In this study, time-domain fluorescence diffuse optical tomography in biological tissue is numerically investigated using a total light approach. Total light is a summation of excitation light and zero-lifetime emission light divided by quantum yield. The zero-lifetime emission light is an emitted fluorescence light calculated by assuming that the fluorescence lifetime is zero. The zero-lifetime emission light is calculated by deconvolving the actually measured emission light with a lifetime function, an exponential function for fluorescence decay. The object for numerical simulation is a 2-D 10 mm-radius circle with the optical properties simulating biological tissues for near infrared light, and contains regions with fluorophore. The inverse problem of fluorescence diffuse optical tomography is solved using time-resolved simulated measurement data of the excitation and total lights for reconstructing the bsorption coefficient and fluorophore concentration simultaneously. The mean time of flight is used as the featured data-type extracted from the time-resolved data. The reconstructed images of fluorophore concentration show good quantitativeness and spatial reproducibility. By use of the total light approach, computation is performed much faster than the conventional ones.


Assuntos
Algoritmos , Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Iluminação/instrumentação , Microscopia de Fluorescência/instrumentação , Tomografia Óptica/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos
3.
Opt Express ; 16(17): 13104-21, 2008 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-18711549

RESUMO

A full time-resolved scheme that has been previously applied in diffuse optical tomography is extended to time-domain fluorescence diffuse optical tomography regime, based on a finite-element-finite-time-difference photon diffusion modeling and a Newton-Raphson inversion framework. The merits of using full time-resolved data are twofold: it helps evaluate the intrinsic performance of time-domain mode for improvement of image quality and set up a valuable reference to the assessment of computationally efficient featured-data-based algorithms, and provides a self-normalized implementation to preclude the necessity of the scaling-factor calibration and spectroscopic-feature assessments of the system as well as to overcome the adversity of system instability. We validate the proposed methodology using simulated data, and evaluate its performances of simultaneous recovery of the fluorescent yield and lifetime as well as its superiority to the featured-data one in the fidelity of image reconstruction.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Tomografia Óptica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA