Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Hypertension ; 79(1): 60-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878901

RESUMO

Familial hyperkalemic hypertension is caused by pathogenic variants in genes of the CUL3 (cullin-3)-KLHL3 (kelch-like-family-member-3)-WNK (with no-lysine [K] kinase) pathway, manifesting clinically as hyperkalemia, metabolic acidosis, and high systolic blood pressure. The ubiquitin E3 ligase CUL3-KLHL3 targets WNK kinases for degradation to limit activation of the thiazide-sensitive NCC (Na-Cl cotransporter). All known variants in CUL3 lead to exon 9 skipping (CUL3Δ9) and typically result in severe familial hyperkalemic hypertension and growth disturbances in patients. Whether other variants in CUL3 cause familial hyperkalemic hypertension is unknown. Here, we identify a novel de novo heterozygous CUL3 variant (CUL3Δ474-477) in a pediatric familial hyperkalemic hypertension patient with multiple congenital anomalies and reveal molecular mechanisms by which CUL3Δ474-477 leads to dysregulation of the CUL3-KLHL3-WNK signaling axis. Using patient-derived urinary extracellular vesicles and dermal fibroblasts, in vitro assays, and cultured kidney cells, we demonstrate that CUL3Δ474-477 causes reduced total CUL3 levels due to increased autoubiquitination. The CUL3Δ474-477 that escapes autodegradation shows enhanced modification with NEDD8 (neural precursor cell expressed developmentally down-regulated protein 8) and increased formation of CUL3-KLHL3 complexes that are impaired in ubiquitinating WNK4. Proteomic analysis of CUL3 complexes revealed that, in addition to increased KLHL3 binding, the CUL3Δ474-477 variant also exhibits increased interactions with other BTB (Bric-a-brac, Tramtrack, and Broad complex) substrate adaptors, providing a rationale for the patient's diverse phenotypes. We conclude that the pathophysiological effects of CUL3Δ474-477 are caused by reduced CUL3 levels and formation of catalytically impaired CUL3 ligase complexes.


Assuntos
Proteínas Culina/genética , Pseudo-Hipoaldosteronismo/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Pré-Escolar , Proteínas Culina/metabolismo , Humanos , Masculino , Proteômica , Pseudo-Hipoaldosteronismo/metabolismo , Transdução de Sinais/genética
2.
PLoS Genet ; 17(11): e1009854, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723967

RESUMO

The forkhead box (Fox) family of transcription factors are highly conserved and play essential roles in a wide range of cellular and developmental processes. We report an individual with severe neurological symptoms including postnatal microcephaly, progressive brain atrophy and global developmental delay associated with a de novo missense variant (M280L) in the FOXR1 gene. At the protein level, M280L impaired FOXR1 expression and induced a nuclear aggregate phenotype due to protein misfolding and proteolysis. RNAseq and pathway analysis showed that FOXR1 acts as a transcriptional activator and repressor with central roles in heat shock response, chaperone cofactor-dependent protein refolding and cellular response to stress pathways. Indeed, FOXR1 expression is increased in response to cellular stress, a process in which it directly controls HSPA6, HSPA1A and DHRS2 transcripts. The M280L mutant compromises FOXR1's ability to respond to stress, in part due to impaired regulation of downstream target genes that are involved in the stress response pathway. Quantitative PCR of mouse embryo tissues show Foxr1 expression in the embryonic brain. Using CRISPR/Cas9 gene editing, we found that deletion of mouse Foxr1 leads to a severe survival deficit while surviving newborn Foxr1 knockout mice have reduced body weight. Further examination of newborn Foxr1 knockout brains revealed a decrease in cortical thickness and enlarged ventricles compared to littermate wild-type mice, suggesting that loss of Foxr1 leads to atypical brain development. Combined, these results suggest FOXR1 plays a role in cellular stress response pathways and is necessary for normal brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/fisiologia , Estresse Fisiológico , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Fenótipo
3.
J Neurogenet ; 35(2): 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970744

RESUMO

KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.


Assuntos
Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Epilepsias Mioclônicas Progressivas/fisiopatologia , Linhagem , Fenótipo , Peixe-Zebra
5.
Am J Hum Genet ; 105(2): 413-424, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327508

RESUMO

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.


Assuntos
Transtornos Dismórficos Corporais/patologia , Cerebelo/anormalidades , Coloboma/patologia , Deficiências do Desenvolvimento/patologia , Epilepsia/patologia , Deficiência Intelectual/patologia , Mutação , Malformações do Sistema Nervoso/patologia , Repetições WD40/genética , Adulto , Sequência de Aminoácidos , Animais , Transtornos Dismórficos Corporais/genética , Cerebelo/patologia , Criança , Coloboma/genética , Deficiências do Desenvolvimento/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Epilepsia/genética , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Malformações do Sistema Nervoso/genética , Fenótipo , Homologia de Sequência , Adulto Jovem
6.
Am J Hum Genet ; 104(6): 1127-1138, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155284

RESUMO

Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.


Assuntos
Ácidos/química , Albinismo/etiologia , Canais de Cloreto/genética , Fibroblastos/patologia , Variação Genética , Doenças por Armazenamento dos Lisossomos/etiologia , Lisossomos/metabolismo , Albinismo/metabolismo , Albinismo/patologia , Animais , Canais de Cloreto/fisiologia , Feminino , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Camundongos , Oócitos/metabolismo , Xenopus laevis
7.
PLoS Genet ; 15(5): e1008143, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125343

RESUMO

Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient's two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient's fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient's biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders.


Assuntos
Oxirredutases/genética , Oxirredutases/metabolismo , Adulto , Alelos , Animais , Sítios de Ligação , Ceruloplasmina/metabolismo , Pré-Escolar , Cobre/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Variação Genética/genética , Células HEK293 , Cabelo , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Fenótipo
8.
Genet Med ; 21(8): 1772-1780, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30700791

RESUMO

PURPOSE: Develop an automated exome analysis workflow that can produce a very small number of candidate variants yet still detect different numbers of deleterious variants between probands and unaffected siblings. METHODS: Ninety-seven outbred nuclear families from the Undiagnosed Diseases Program/Network included single probands and the corresponding unaffected sibling(s). Single-nucleotide polymorphism (SNP) chip and exome analyses were performed on all, with proband and unaffected sibling considered independently as the target. The total burden of candidate genetic variants was summed for probands and siblings over all considered disease models. RESULTS: Exome analysis workflow include automated programs for ethnicity-matched genotype calling, salvage pathway for Mendelian inconsistency, compound heterozygous recessive detection, BAM file regional curation, population frequency filtering, pedigree-aware BAM file noise evaluation, and exon deletion filtration. This workflow relied heavily on BAM file analysis. A greater average pathogenic variant number was found compared with unaffected siblings. This was significant (p < 0.05) when using published recommended thresholds, and implies that causal variants are retained in many probands' lists. CONCLUSION: Using Mendelian and non-Mendelian models, this agnostic exome analysis shows a difference between a small group of probands and their unaffected siblings. This workflow produces candidate lists small enough to pursue with laboratory validation.


Assuntos
Variações do Número de Cópias de DNA/genética , Processamento Eletrônico de Dados , Doenças Genéticas Inatas/diagnóstico , Análise de Sequência de DNA , Exoma/genética , Éxons/genética , Feminino , Doenças Genéticas Inatas/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Deleção de Sequência/genética , Irmãos
9.
J Med Genet ; 56(11): 778-782, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30385646

RESUMO

BACKGROUND: Copa syndrome is a rare autosomal dominant disorder with abnormal intracellular vesicle trafficking. The objective of this work is to expand the knowledge about this disorder by delineating phenotypic features of an unreported COPA family. METHODS AND RESULTS: A heterozygous missense variant (c.698 G>A, p.Arg233His) in COPA was identified in four members of a three-generation kindred with lung, autoimmune and malignant disease of unknown aetiology. Ages of onset were 56, 26, 16 and 1 year, with earlier age of onset in successive generations. Presenting symptoms were cough and dyspnoea. Findings included small lung cysts, follicular bronchiolitis, interstitial lung disease, neuroendocrine cell hyperplasia, rheumatoid arthritis, avascular necrosis and select abnormal autoimmune serologies. Neither alveolar haemorrhage nor glomerular disease were present. Features not previously associated with Copa syndrome included neuromyelitis optica, pulmonary carcinoid tumour, clear cell renal carcinoma, renal cysts, hepatic cysts, nephrolithiasis, pyelonephritis and meningitis. Longitudinal evaluations demonstrated slow progression of lung disease and extrapulmonary cysts. CONCLUSIONS: Worsening severity with successive generations may be observed in Copa syndrome. Extrapulmonary cysts, malignancies, autoimmune neurological disorders and infections are clinical features that may be associated with Copa syndrome. Further studies are indicated to fully define the phenotypic spectrum of this disorder.


Assuntos
Nefropatias/genética , Doenças Pulmonares Intersticiais/genética , Mutação de Sentido Incorreto/genética , Adolescente , Adulto , Feminino , Heterozigoto , Humanos , Lactente , Estudos Longitudinais , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Síndrome
10.
Am J Med Genet A ; 176(12): 2768-2776, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30548380

RESUMO

We describe two unrelated children with de novo variants in the non-erythrocytic alpha-II-spectrin (SPTAN1) gene who have hypoplastic brain structures, intellectual disability, and both fine and gross motor impairments. Using agnostic exome sequencing, we identified a nonsense variant creating a premature stop codon in exon 21 of SPTAN1, and in a second patient we identified an intronic substitution in SPTAN1 prior to exon 50 creating a new donor acceptor site. Neither of these variants has been described previously. Although some of these patients' features are consistent with the known SPTAN1 encephalopathy phenotype, these two children do not have epilepsy, in contrast to reports about nearly every other patient with heterozygous SPTAN1 variants and in all patients with a variant near the C-terminal coding region. Moreover, both children have abnormal thyroid function, which has not been previously reported in association with SPTAN1 variant. We present a detailed discussion of the clinical manifestations of these two unique SPTAN1 variants and provide evidence that both variants result in reduced mRNA expression despite different locations within the gene and clinical phenotypes. These findings expand the motor, cognitive, and behavioral spectrum of the SPTAN1-associated phenotype and invite speculation about underlying pathophysiologies.


Assuntos
Proteínas de Transporte/genética , Epilepsia/diagnóstico , Epilepsia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Proteínas dos Microfilamentos/genética , Fenótipo , Biomarcadores , Criança , Hibridização Genômica Comparativa , Eletroencefalografia , Fácies , Fibroblastos , Humanos , Imuno-Histoquímica , Leucócitos/metabolismo , Masculino , Imagem Multimodal , Neuroimagem , Testes Neuropsicológicos , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma
11.
Am J Hum Genet ; 103(5): 794-807, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401460

RESUMO

Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.

12.
Ann Neurol ; 84(5): 766-780, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30295347

RESUMO

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.


Assuntos
Autofagia/genética , Lisossomos/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Canais de Potássio/deficiência , Idade de Início , Pré-Escolar , Feminino , Humanos , Lactente , Lisossomos/patologia , Masculino , Mutação , Linhagem , Canais de Potássio/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Endocr Soc ; 1(8): 1006-1011, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29264551

RESUMO

Aggrecan, a proteoglycan, is an important component of cartilage extracellular matrix, including that of the growth plate. Heterozygous mutations in ACAN, the gene encoding aggrecan, cause autosomal dominant short stature, accelerated skeletal maturation, and joint disease. The inheritance pattern and the presence of bone age equal to or greater than chronological age have been consistent features, serving as diagnostic clues. From family 1, a 6-year-old boy presented with short stature [height standard deviation score (SDS), -1.75] and bone age advanced by 3 years. There was no family history of short stature (height SDS: father, -0.76; mother, 0.7). Exome sequencing followed by Sanger sequencing identified a de novo novel heterozygous frameshift mutation in ACAN (c.6404delC: p.A2135Dfs). From family 2, a 12-year-old boy was evaluated for short stature (height SDS, -3.9). His bone age at the time of genetic evaluation was approximately 1 year less than his chronological age. Family history was consistent with an autosomal dominant inheritance of short stature, with several affected members also showing early-onset osteoarthritis. Exome sequencing, confirmed by Sanger sequencing, identified a novel nonsense mutation in ACAN (c.4852C>T: p.Q1618X), which cosegregated with the phenotype. In conclusion, patients with ACAN mutations may present with nonfamilial short stature and with bone age less than chronological age. These findings expand the known phenotypic spectrum of heterozygous ACAN mutations and indicate that this diagnosis should be considered in children without a family history of short stature and in children without accelerated skeletal maturation.

14.
Hum Mutat ; 38(10): 1412-1420, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28675565

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Deficiências do Desenvolvimento/genética , Genes Recessivos , Glicina-tRNA Ligase/genética , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/fisiopatologia , Criança , Citoplasma/enzimologia , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Variação Genética , Humanos , Mitocôndrias/enzimologia , Sequenciamento do Exoma
15.
Mol Genet Metab ; 120(3): 288-294, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28041820

RESUMO

Combined alpha-delta platelet storage pool deficiency is characterized by the absence or reduction in the number of both alpha granules and dense bodies. This disorder can have variable severity as well as a variable inheritance pattern. We describe two patients from unrelated families with combined alpha-delta storage pool deficiency due to mutations in GFI1B, a zinc finger protein known to act as a transcriptional repressor of various genes. We demonstrate that this disease is associated with either a heterozygous mutation (de novo or familial) abrogating the binding of the zinc fingers with the promoter of its target genes, or by hypomorphic biallelic mutations in GFI1B leading to autosomal recessive inheritance.


Assuntos
Mutação , Deficiência do Pool Plaquetário/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Análise de Sequência de DNA/métodos , Adolescente , Criança , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Dedos de Zinco
16.
Am J Hum Genet ; 100(1): 128-137, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017372

RESUMO

Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Ataxia/genética , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Feminino , Genitália/anormalidades , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Hipotonia Muscular/genética , Distúrbios da Fala/genética , Síndrome , Dedos de Zinco/genética
17.
BMC Med Genomics ; 9(1): 56, 2016 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-27568008

RESUMO

BACKGROUND: Exome sequencing has advanced to clinical practice and proven useful for obtaining molecular diagnoses in rare diseases. In approximately 75 % of cases, however, a clinical exome study does not produce a definitive molecular diagnosis. These residual cases comprise a new diagnostic challenge for the genetics community. The Undiagnosed Diseases Program of the National Institutes of Health routinely utilizes exome sequencing for refractory clinical cases. Our preliminary data suggest that disease-causing variants may be missed by current standard-of-care clinical exome analysis. Such false negatives reflect limitations in experimental design, technical performance, and data analysis. RESULTS: We present examples from our datasets to quantify the analytical performance associated with current practices, and explore strategies to improve the completeness of data analysis. In particular, we focus on patient ascertainment, exome capture, inclusion of intronic variants, and evaluation of medium-sized structural variants. CONCLUSIONS: The strategies we present may recover previously-missed, disease causing variants in second-pass exome analysis. Understanding the limitations of the current clinical exome search space provides a rational basis to improve methods for disease variant detection using genome-scale sequencing techniques.


Assuntos
Exoma/genética , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
18.
PLoS One ; 11(3): e0151429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26990090

RESUMO

A 21-year old male presented with ataxia and dysarthria that had appeared over a period of months. Exome sequencing identified a de novo missense variant in ATP1A3, the gene encoding the α3 subunit of Na,K-ATPase. Several lines of evidence suggest that the variant is causative. ATP1A3 mutations can cause rapid-onset dystonia-parkinsonism (RDP) with a similar age and speed of onset, as well as severe diseases of infancy. The patient's ATP1A3 p.Gly316Ser mutation was validated in the laboratory by the impaired ability of the expressed protein to support the growth of cultured cells. In a crystal structure of Na,K-ATPase, the mutated amino acid was directly apposed to a different amino acid mutated in RDP. Clinical evaluation showed that the patient had many characteristics of RDP, however he had minimal fixed dystonia, a defining symptom of RDP. Successive magnetic resonance imaging (MRI) revealed progressive cerebellar atrophy, explaining the ataxia. The absence of dystonia in the presence of other RDP symptoms corroborates other evidence that the cerebellum contributes importantly to dystonia pathophysiology. We discuss the possibility that a second de novo variant, in ubiquilin 4 (UBQLN4), a ubiquitin pathway component, contributed to the cerebellar neurodegenerative phenotype and differentiated the disease from other manifestations of ATP1A3 mutations. We also show that a homozygous variant in GPRIN1 (G protein-regulated inducer of neurite outgrowth 1) deletes a motif with multiple copies and is unlikely to be causative.


Assuntos
Ataxia/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Ataxia/etiologia , Atrofia/genética , Proteínas de Transporte/genética , Cerebelo/patologia , Distonia/genética , Distonia/fisiopatologia , Distúrbios Distônicos/etiologia , Distúrbios Distônicos/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores de N-Metil-D-Aspartato/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto Jovem
19.
Mol Genet Metab ; 117(4): 393-400, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26846157

RESUMO

INTRODUCTION: The inability of some seriously and chronically ill individuals to receive a definitive diagnosis represents an unmet medical need. In 2008, the NIH Undiagnosed Diseases Program (UDP) was established to provide answers to patients with mysterious conditions that long eluded diagnosis and to advance medical knowledge. Patients admitted to the NIH UDP undergo a five-day hospitalization, facilitating highly collaborative clinical evaluations and a detailed, standardized documentation of the individual's phenotype. Bedside and bench investigations are tightly coupled. Genetic studies include commercially available testing, single nucleotide polymorphism microarray analysis, and family exomic sequencing studies. Selected gene variants are evaluated by collaborators using informatics, in vitro cell studies, and functional assays in model systems (fly, zebrafish, worm, or mouse). INSIGHTS FROM THE UDP: In seven years, the UDP received 2954 complete applications and evaluated 863 individuals. Nine vignettes (two unpublished) illustrate the relevance of an undiagnosed diseases program to complex and common disorders, the coincidence of multiple rare single gene disorders in individual patients, newly recognized mechanisms of disease, and the application of precision medicine to patient care. CONCLUSIONS: The UDP provides examples of the benefits expected to accrue with the recent launch of a national Undiagnosed Diseases Network (UDN). The UDN should accelerate rare disease diagnosis and new disease discovery, enhance the likelihood of diagnosing known diseases in patients with uncommon phenotypes, improve management strategies, and advance medical research.


Assuntos
National Institutes of Health (U.S.) , Medicina de Precisão , Doenças Raras/diagnóstico , Pesquisa , Humanos , Medicina de Precisão/métodos , Doenças Raras/etiologia , Estados Unidos
20.
Genet Med ; 18(6): 608-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26562225

RESUMO

PURPOSE: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. METHODS: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. RESULTS: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. CONCLUSION: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med 18 6, 608-617.


Assuntos
Sequenciamento do Exoma/métodos , Exoma/genética , Doenças Raras/genética , Doenças Raras/fisiopatologia , Animais , Biologia Computacional , Bases de Dados Genéticas , Modelos Animais de Doenças , Estudos de Associação Genética , Variação Genética , Humanos , Camundongos , National Institutes of Health (U.S.) , Pacientes , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Estados Unidos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA