Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Front Immunol ; 15: 1375413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895115

RESUMO

Introduction: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with unacceptably low cure rates occurring often in patients with neurofibromatosis 1 defects. To investigate oncolytic Herpes Simplex Virus (oHSV) as an immunotherapeutic approach, we compared viral replication, functional activity, and immune response between unarmed and interleukin 12 (IL-12)-armed oncolytic viruses in virus-permissive (B109) and -resistant (67C-4) murine MPNSTs. Methods: This study compared two attenuated IL-12-oHSVs with γ134.5 gene deletions (Δγ134.5) and the same transgene expression cassette. The primary difference in the IL-12-oHSVs was in their ability to counter the translational arrest response in infected cells. Unlike M002 (Δγ134.5, mIL-12), C002 (Δγ134.5, mIL-12, IRS1) expresses an HCMV IRS1 gene and evades dsRNA activated translational arrest in infected cells. Results and discussion: Our results show that oHSV replication and gene expression results in vitro were not predictive of oHSV direct oncolytic activity in vivo. Tumors that supported viral replication in cell culture studies resisted viral replication by both oHSVs and restricted M002 transgene expression in vivo. Furthermore, two IL-12-oHSVs with equivalent transcriptional activity differed in IL-12 protein production in vivo, and the differences in IL-12 protein levels were reflected in immune infiltrate activity changes as well as tumor growth suppression differences between the IL-12-oHSVs. C002-treated tumors exhibited sustained IL-12 production with improved dendritic cells, monocyte-macrophage activity (MHCII, CD80/CD86 upregulation) and a polyfunctional Th1-cell response in the tumor infiltrates. Conclusion: These results suggest that transgene protein production differences between oHSVs in vivo, in addition to replication differences, can impact OV-therapeutic activity.


Assuntos
Interleucina-12 , Terapia Viral Oncolítica , Vírus Oncolíticos , Transgenes , Replicação Viral , Animais , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Humanos , Simplexvirus/genética , Células Dendríticas/imunologia , Feminino
2.
Mol Cancer Ther ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710101

RESUMO

PURPOSE: Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSVs) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell mediated immunity may lead to more durable tumor regression. EXPERIMENTAL DESIGN: To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine co-delivering peptide antigens and Toll-like receptor-7 and -8 agonists (TLR-7/8a) (referred to as SNAPvax™), that induces robust tumor specific T cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T cell responses, viral replication, and preclinical efficacy. RESULTS: The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax™ vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumour volume and increases in virus replication and tumor antigen specific CD8+ T cells. CONCLUSIONS: These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.

3.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226619

RESUMO

Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , DNA , Microambiente Tumoral
4.
Theranostics ; 14(3): 911-923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250045

RESUMO

Rationale: Novel immune-activating therapeutics for the treatment of glioblastoma multiforme (GBM) have shown potential for tumor regression and increased survival over standard therapies. However, immunotherapy efficacy remains inconsistent with response assessment being complicated by early treatment-induced apparent radiological tumor progression and slow downstream effects. This inability to determine early immunotherapeutic benefit results in a drastically decreased window for alternative, and potentially more effective, treatment options. The objective of this study is to evaluate the effects of combination immunotherapy on early CD8+ cell infiltration and its association with long term response in orthotopic syngeneic glioblastoma models. Methods: Luciferase positive GBM orthotopic mouse models (GSC005-luc) were imaged via [89Zr]-CD8 positron emission tomography (PET) one week following treatment with saline, anti-PD1, M002 oncolytic herpes simplex virus (oHSV) or combination immunotherapy. Subsequently, brains were excised, imaged via [89Zr]-CD8 ImmunoPET and evaluated though autoradiography and histology for H&E and CD8 immunohistochemistry. Longitudinal immunotherapeutic effects were evaluated through [89Zr]-CD8 PET imaging one- and three-weeks following treatment, with changes in tumor volume monitored on a three-day basis via bioluminescence imaging (BLI). Response classification was then performed based on long-term BLI signal changes. Statistical analysis was performed between groups using one-way ANOVA and two-sided unpaired T-test, with p < 0.05 considered significant. Correlations between imaging and biological validation were assessed via Pearson's correlation test. Results: [89Zr]-CD8 PET standardized uptake value (SUV) quantification was correlated with ex vivo SUV quantification (r = 0.61, p < 0.01), autoradiography (r = 0.46, p < 0.01), and IHC tumor CD8+ cell density (r = 0.55, p < 0.01). Classification of therapeutic responders, via bioluminescence signal, revealed a more homogeneous CD8+ immune cell distribution in responders (p < 0.05) one-week following immunotherapy. Conclusions: Assessment of early CD8+ cell infiltration and distribution in the tumor microenvironment provides potential imaging metrics for the characterization of oHSV and checkpoint blockade immunotherapy response in GBM. The combination therapies showed enhanced efficacy compared to single agent immunotherapies. Further development of immune-focused imaging methods can provide clinically relevant metrics associated with immune cell localization that can inform immunotherapeutic efficacy and subsequent treatment response in GBM patients.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Tomografia Computadorizada por Raios X , Imunoterapia , Tomografia por Emissão de Pósitrons , Linfócitos T CD8-Positivos , Microambiente Tumoral
5.
Expert Opin Biol Ther ; 23(10): 987-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37749907

RESUMO

INTRODUCTION: Many pediatric patients with malignant tumors continue to suffer poor outcomes. The current standard of care includes maximum safe surgical resection followed by chemotherapy and radiation which may be associated with considerable long-term morbidity. The emergence of oncolytic virotherapy (OVT) may provide an alternative or adjuvant treatment for pediatric oncology patients. AREAS COVERED: We reviewed seven virus types that have been investigated in past or ongoing pediatric tumor clinical trials: adenovirus (AdV-tk, Celyvir, DNX-2401, VCN-01, Ad-TD-nsIL-12), herpes simplex virus (G207, HSV-1716), vaccinia (JX-594), reovirus (pelareorep), poliovirus (PVSRIPO), measles virus (MV-NIS), and Senecavirus A (SVV-001). For each virus, we discuss the mechanism of tumor-specific replication and cytotoxicity as well as key findings of preclinical and clinical studies. EXPERT OPINION: Substantial progress has been made in the past 10 years regarding the clinical use of OVT. From our review, OVT has favorable safety profiles compared to chemotherapy and radiation treatment. However, the antitumor effects of OVT remain variable depending on tumor type and viral agent used. Although the widespread adoption of OVT faces many challenges, we are optimistic that OVT will play an important role alongside standard chemotherapy and radiotherapy for the treatment of malignant pediatric solid tumors in the future.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Criança , Vírus Oncolíticos/genética , Neoplasias/terapia , Simplexvirus/genética , Vaccinia virus , Terapia Genética
6.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568717

RESUMO

Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite standard therapies, including resection and chemoradiation, recurrence is virtually inevitable. Current treatment for recurrent glioblastoma (rGBM) is rapidly evolving, and emerging therapies aimed at targeting primary GBM are often first tested in rGBM to demonstrate safety and feasibility, which, in recent years, has primarily been in the form of immunotherapy. The purpose of this review is to highlight progress in clinical trials of immunotherapy for rGBM, including immune checkpoint blockade, oncolytic virotherapy, chimeric antigen receptor (CAR) T-cell therapy, cancer vaccine and immunotoxins. Three independent reviewers covered literature, published between the years 2000 and 2022, in various online databases. In general, the efficacy of immunotherapy in rGBM remains uncertain, and is limited to subsets/small cohorts of patients, despite demonstrating feasibility in early-stage clinical trials. However, considerable progress has been made in understanding the mechanisms that may preclude rGBM patients from responding to immunotherapy, as well as in developing new approaches/combination strategies that may inspire optimism for the utility of immunotherapy in this devastating disease. Continued trials are necessary to further assess the best therapeutic avenues and ascertain which treatments might benefit each patient individually.

7.
Neurosurgery ; 93(6): 1313-1318, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37449861

RESUMO

BACKGROUND AND OBJECTIVES: There is wide variation in treatment planning strategy for central nervous system (CNS) stereotactic radiosurgery. We sought to understand what relationships exist between intratumor maximum dose and local control (LC) or CNS toxicity, and dosimetric effects of constraining hotspots on plan quality of multiple metastases volumetric modulated arc therapy radiosurgery plans. METHODS: We captured brain metastases from 2015 to 2017 treated with single-isocenter volumetric modulated arc therapy radiosurgery. Included tumors received single-fraction stereotactic radiosurgery, had no previous surgery or radiation, and available follow-up imaging. Our criterion for local failure was 25% increase in tumor diameter on follow-up MRI or pathologic confirmation of tumor recurrence. We defined significant CNS toxicity as Radiation Therapy Oncology Group irreversible Grade 3 or higher. We performed univariate and multivariate analyses evaluating factors affecting LC. We examined 10 stereotactic radiosurgery plans with prescriptions of 18 Gy to all targets originally planned without constraints on the maximum dose within the tumor. We replanned each with a constraint of Dmax 120%. We compared V50%, mean brain dose, and Dmax between plans. RESULTS: Five hundred and thirty tumors in 116 patients were available for analysis. Median prescription dose was 18 Gy, and median prescription isodose line (IDL) was 73%. Kaplan-Meier estimate of 12-month LC only tumor volume (HR 1.43 [1.22-1.68] P < .001) was predictive of local failure on univariate analysis; prescription IDL and histology were not. In multivariate analysis, tumor volume impacted local failure (HR 1.43 [1.22-1.69] P < .001) but prescription IDL did not (HR 0.95 [0.86-1.05] P = .288). Only a single grade 3 and 2 grade 4 toxicities were observed; tumor volume was predictive of CNS toxicity (HR 1.58 [1.25-2.00]; P < .001), whereas prescription IDL was not (HR 1.01 [0.87-1.17] P = .940). CONCLUSION: The prescription isodose line had no impact on local tumor control or CNS toxicity. Penalizing radiosurgery hotspots resulted in worse radiosurgery plans with poorer gradient. Limiting maximum dose in gross tumor causes increased collateral exposure to surrounding tissue and should be avoided.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Recidiva Local de Neoplasia/cirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
8.
Cancer ; 129(19): 3010-3022, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246417

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant primary brain tumor. Emerging reports have suggested that racial and socioeconomic disparities influence the outcomes of patients with GBM. No studies to date have investigated these disparities controlling for isocitrate dehydrogenase (IDH) mutation and O-6-methylguanine-DNA methyltransferase (MGMT) status. METHODS: Adult patients with GBM were retrospectively reviewed at a single institution from 2008 to 2019. Univariable and multivariable complete survival analyses were performed. A Cox proportional hazards model was used to assess the effect of race and socioeconomic status controlling for a priori selected variables with known relevance to survival. RESULTS: In total, 995 patients met inclusion criteria. Of these, 117 patients (11.7%) were African American (AA). The median overall survival for the entire cohort was 14.23 months. In the multivariable model, AA patients had better survival compared with White patients (hazard ratio [HR], 0.37; 95% confidence interval [CI], 0.2-0.69). The observed survival difference was significant in both a complete case analysis model and a multiple imputations model accounting for missing molecular data and controlling for treatment and socioeconomic status. AA patients with low income (HR, 2.17; 95% CI, 1.04-4.50), public insurance (HR, 2.25; 95% CI, 1.04-4.87), or no insurance (HR, 15.63; 95% CI, 2.72-89.67) had worse survival compared with White patients with low income, public insurance, or no insurance, respectively. CONCLUSIONS: Significant racial and socioeconomic disparities were identified after controlling for treatment, GBM genetic profile, and other variables associated with survival. Overall, AA patients demonstrated better survival. These findings may suggest the possibility of a protective genetic advantage in AA patients. PLAIN LANGUAGE SUMMARY: To best personalize treatment for and understand the causes of glioblastoma, racial and socioeconomic influences must be examined. The authors report their experience at the O'Neal Comprehensive Cancer Center in the deep south. In this report, contemporary molecular diagnostic data are included. The authors conclude that there are significant racial and socioeconomic disparities that influence glioblastoma outcome and that African American patients do better.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/diagnóstico , Estudos Retrospectivos , Disparidades Socioeconômicas em Saúde , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Análise de Sobrevida , Disparidades em Assistência à Saúde
10.
CNS Oncol ; 11(4): CNS90, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408899

RESUMO

Glioblastoma (GBM) is the most common malignant adult brain and has a poor prognosis. Routine post-treatment MRI evaluations are required to assess treatment response and disease progression. We present a case of an 83-year-old female who underwent MRI assessment of post-treatment GBM after intravenous iron replacement therapy, ferumoxytol. The brain MRI revealed unintended alteration of MRI signal characteristics from the iron containing agent which confounded diagnostic interpretation and subsequently, the treatment planning. Ferumoxytol injection prior to contrast enhanced MRI must be screened in post-treatment GBM patients to accurately evaluate tumor activity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Feminino , Humanos , Idoso de 80 Anos ou mais , Óxido Ferroso-Férrico , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Meios de Contraste , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Imageamento por Ressonância Magnética , Ferro
11.
Clin Cancer Res ; 28(24): 5419-5430, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239623

RESUMO

PURPOSE: Oncolytic virotherapy with herpes simplex virus-1 (HSV) has shown promise for the treatment of pediatric and adult brain tumors; however, completed and ongoing clinical trials have utilized intratumoral/peritumoral oncolytic HSV (oHSV) inoculation due to intraventricular/intrathecal toxicity concerns. Intratumoral delivery requires an invasive neurosurgical procedure, limits repeat injections, and precludes direct targeting of metastatic and leptomeningeal disease. To address these limitations, we determined causes of toxicity from intraventricular oHSV and established methods for mitigating toxicity to treat disseminated brain tumors in mice. EXPERIMENTAL DESIGN: HSV-sensitive CBA/J mice received intraventricular vehicle, inactivated oHSV, or treatment doses (1×107 plaque-forming units) of oHSV, and toxicity was assessed by weight loss and IHC. Protective strategies to reduce oHSV toxicity, including intraventricular low-dose oHSV or interferon inducer polyinosinic-polycytidylic acid (poly I:C) prior to oHSV treatment dose, were evaluated and then utilized to assess intraventricular oHSV treatment of multiple models of disseminated CNS disease. RESULTS: A standard treatment dose of intraventricular oHSV damaged ependymal cells via virus replication and induction of CD8+ T cells, whereas vehicle or inactivated virus resulted in no toxicity. Subsequent doses of intraventricular oHSV caused little additional toxicity. Interferon induction with phosphorylation of eukaryotic initiation factor-2α (eIF2α) via intraventricular pretreatment with low-dose oHSV or poly I:C mitigated ependyma toxicity. This approach enabled the safe delivery of multiple treatment doses of clinically relevant oHSV G207 and prolonged survival in disseminated brain tumor models. CONCLUSIONS: Toxicity from intraventricular oHSV can be mitigated, resulting in therapeutic benefit. These data support the clinical translation of intraventricular G207.


Assuntos
Neoplasias Encefálicas , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Camundongos , Animais , Herpesvirus Humano 1/genética , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos CBA , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Neoplasias Encefálicas/patologia , Poli I
12.
World Neurosurg ; 166: e511-e520, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843584

RESUMO

BACKGROUND: Neurosurgery (NS) is among the most selective specialties in the United States. As the United States Medical Licensing Examination (USMLE) Step 1 transitions to a binary pass/fail score, residency programs face unclear challenges in screening and evaluating applicants. The aim of this study is to provide insights into the perceived impact of changes to the USMLE Step 1 grading in the applicant selection process. METHODS: We created a survey using questions regarding NS program demographics, the perceived predictive abilities of Step 1 and Step 2 clinical knowledge (CK), and several factors that programs consider when assessing applicants. We queried program directors (PDs), program coordinators (PCs), and assistant PDs at 117 NS residency programs. Respondents were asked to rank these factors in order of importance for selection at their respective training program. We used descriptive statistics and a Wilcoxon matched-pairs signed-rank test to evaluate the effects of these changes using STATA 17. RESULTS: A total of 35 (30%) residency programs responded with 26 (74%) completing the factor ranking questions. 86% (95% confidence interval, 71.5%-94.3%) disagreed that the changes will better prepare students clinically. USMLE Step 2 CK scores, class rank, and away rotations saw significant increases in priority in the absence of a graded Step 1, whereas letters of recommendation and surrogates for research productivity saw notable, but not significant, changes after adjusting for multiple testing. CONCLUSIONS: Reporting binary Step 1 grades marks a significant shift in assessing applicants for NS residency by emphasizing Step 2 CK, class rank, and research productivity.


Assuntos
Internato e Residência , Medicina , Neurocirurgia , Avaliação Educacional , Eficiência , Humanos , Neurocirurgia/educação , Inquéritos e Questionários , Estados Unidos
13.
CA Cancer J Clin ; 72(5): 454-489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708940

RESUMO

Brain metastases are a challenging manifestation of renal cell carcinoma. We have a limited understanding of brain metastasis tumor and immune biology, drivers of resistance to systemic treatment, and their overall poor prognosis. Current data support a multimodal treatment strategy with radiation treatment and/or surgery. Nonetheless, the optimal approach for the management of brain metastases from renal cell carcinoma remains unclear. To improve patient care, the authors sought to standardize practical management strategies. They performed an unstructured literature review and elaborated on the current management strategies through an international group of experts from different disciplines assembled via the network of the International Kidney Cancer Coalition. Experts from different disciplines were administered a survey to answer questions related to current challenges and unmet patient needs. On the basis of the integrated approach of literature review and survey study results, the authors built algorithms for the management of single and multiple brain metastases in patients with renal cell carcinoma. The literature review, consensus statements, and algorithms presented in this report can serve as a framework guiding treatment decisions for patients. CA Cancer J Clin. 2022;72:454-489.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Encefálicas/terapia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Terapia Combinada , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/terapia
14.
J Neurooncol ; 158(1): 33-40, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441948

RESUMO

PURPOSE: Primary Central Nervous System Lymphoma (PCNSL) is an aggressive tumor that is confined to the CNS. Although the provision of high-dose methotrexate (HD-MTX) has remarkably improved outcomes in PCNSL patients, the optimal treatment regimens and standard MTX dose for induction therapy have been largely controversial. Herein, we sought to explore the impact of adjuvant rituximab and different dosages of induction HD-MTX on survival outcomes of immunocompetent patients with PCNSL. METHODS: In this study, we examined patients with PCNSL treated at a single NCI-designated comprehensive cancer center to evaluate their survival outcomes. We conducted a retrospective analysis of 51 immunocompetent patients with PCNSL who received their induction chemotherapy at the University of Alabama at Birmingham (UAB) between 2001 and 2019. Only adult patients with a confirmed diagnosis of PCNSL who had either HD-MTX alone or in combination with rituximab were included. Patients' demographics, clinical characteristics, and survival data were collected and analyzed. RESULTS: There is no significant difference in survival among patients who received MTX alone versus MTX plus rituximab (HR = 0.996 (95% CI: 0.398-2.493), p = 0.994). Lower doses of MTX were associated with worse survival outcomes (HR = 0.680 (95% CI: 0.530-0.872), p = 0.002); however, this difference in survival was not significant when adjusted to age (HR = 0.797 (95% CI: 0.584-1.088), p = 0.153). CONCLUSION: Our experience challenges the role of rituximab in PCNSL during induction therapy. Our study also highlights the shorter survival in elderly patients with PCNSL which can be related, to some extent, to the relatively lower doses of HD-MTX. There is an unmet need to establish a consensus on the most effective upfront regimen in PCNSL through prospective studies.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Metotrexato/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos , Rituximab/uso terapêutico
15.
Pharmacol Ther ; 239: 108193, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35487285

RESUMO

Malignant brain tumors constitute nearly one-third of cancer diagnoses in children and have recently surpassed hematologic malignancies as the most lethal neoplasm in the pediatric population. Outcomes for children with brain tumors are unacceptably poor and current standards of care-surgical resection, chemotherapy, and radiation-are associated with significant long-term morbidity. Oncolytic virotherapy has emerged as a promising immunotherapy for the treatment of brain tumors. While the majority of brain tumor clinical trials utilizing oncolytic virotherapy have been in adults, five viruses are being tested in pediatric brain tumor clinical trials: herpes simplex virus (G207), reovirus (pelareorep/Reolysin), measles virus (MV-NIS), poliovirus (PVSRIPO), and adenovirus (DNX-2401, AloCELYVIR). Herein, we review past and current pediatric immunovirotherapy brain tumor trials including the relevant preclinical and clinical research that contributed to their development. We describe mechanisms by which the viruses may overcome barriers in treating pediatric brain tumors, examine challenges associated with achieving effective, durable responses, highlight unique aspects and successes of the trials, and discuss future directions of immunovirotherapy research for the treatment of pediatric brain tumors.


Assuntos
Neoplasias Encefálicas , Terapia Viral Oncolítica , Adulto , Criança , Humanos , Neoplasias Encefálicas/terapia , Adenoviridae , Imunoterapia
16.
Neuroophthalmology ; 46(2): 91-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273411

RESUMO

A 30-year-old woman with idiopathic intracranial hypertension experienced worsening headaches and decreasing vision in her left eye. She underwent an uncomplicated ventriculoperitoneal shunt procedure but the following day was found to have cerebral venous sinus thrombosis. Treatment included venous sinus thrombectomy and anticoagulation. She had a favourable clinical outcome. Extensive evaluation including testing for thrombophilia was unremarkable. Potential causes for this rare association are discussed.

17.
Clin Cancer Res ; 28(3): 498-506, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105718

RESUMO

PURPOSE: Previously, clinical trials of experimental virotherapy for recurrent glioblastoma multiforme (GBM) demonstrated that inoculation with a conditionally replication-competent Δγ134.5 oncolytic herpes simplex virus (oHSV), G207, was safe. Following the initial safety study, a phase Ib trial enrolled 6 adult patients diagnosed with GBM recurrence from which tumor tissue was banked for future studies. PATIENTS AND METHODS: Here, we analyzed tumor RNA sequencing (RNA-seq) data obtained from pre- and posttreatment (collected 2 or 5 days after G207 injection) biopsies from the phase Ib study patients. RESULTS: Using a Spearman rank-order correlation analysis, we identified approximately 500 genes whose expression pattern correlated with survival duration. Many of these genes were enriched for the intrinsic IFN-mediated antiviral and adaptive immune functional responses, including immune cell chemotaxis and antigen presentation to T-cells. Furthermore, we show that the expression of several T-cell-related genes was highest in the patient with the longest survival after G207 inoculation. CONCLUSIONS: Our data support that the oHSV-induced type I IFN production and the subsequent recruitment of an adaptive immune response differed between enrolled patients and showed association with survival duration in patients with recurrent malignant glioma after treatment with an early generation oHSV.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ensaios Clínicos Fase I como Assunto , Perfilação da Expressão Gênica/métodos , Glioblastoma/genética , Glioblastoma/terapia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos , RNA Neoplásico/genética , Simplexvirus , Adulto , Idoso , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/mortalidade , Feminino , Glioblastoma/imunologia , Glioblastoma/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Taxa de Sobrevida
18.
Cancers (Basel) ; 14(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159029

RESUMO

Cancer is the leading cause of death by disease in children, and over 15% of pediatric cancer-related mortalities are due to neuroblastoma. Current treatment options for neuroblastoma remain suboptimal as they often have significant toxicities, are associated with long-term side effects, and result in disease relapse in over half of children with high-risk disease. There is a dire need for new therapies, and oncolytic viruses may represent an effective solution. Oncolytic viruses attack tumor cells in two ways: direct infection of tumor cells leading to cytolysis, and production of a debris field that stimulates an anti-tumor immune response. Our group has previously shown that M002, an oncolytic herpes simplex virus (oHSV), genetically engineered to express murine interleukin-12 (mIL-12), was effective at targeting and killing long term passage tumor cell lines. In the current study, we investigated M002 in three neuroblastoma patient-derived xenografts (PDXs). PDXs better recapitulate the human condition, and these studies were designed to gather robust data for translation to a clinical trial. We found that all three PDXs expressed viral entry receptors, and that the virus actively replicated in the cells. M002 caused significant tumor cell death in 2D culture and 3D bioprinted tumor models. Finally, the PDXs displayed variable susceptibility to M002, with a more profound effect on high-risk neuroblastoma PDXs compared to low-risk PDX. These findings validate the importance of incorporating PDXs for preclinical testing of oncolytic viral therapeutics and showcase a novel technique, 3D bioprinting, to test therapies in PDXs. Collectively, our data indicate that oHSVs effectively target high-risk neuroblastoma, and support the advancement of this therapy to the clinical setting.

19.
Neurooncol Adv ; 4(1): vdab186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35088051

RESUMO

BACKGROUND: Glioblastoma (GBM) has a 5-year survival rate of 3%-5%. GBM treatment includes maximal resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ). Cytochrome C oxidase (CcO) is a mitochondrial enzyme involved in the mechanism of resistance to TMZ. In a prior retrospective trial, CcO activity in GBMs inversely correlated with clinical outcome. The current Cyto-C study was designed to prospectively evaluate and validate the prognostic value of tumor CcO activity in patients with newly diagnosed primary GBM, and compared to the known prognostic value of MGMT promoter methylation status. METHODS: This multi-institutional, blinded, prospective biomarker study enrolled 152 patients with newly diagnosed GBM who were to undergo surgical resection and would be candidates for standard of care. The primary end point was overall survival (OS) time, and the secondary end point was progression-free survival (PFS) time. Tumor CcO activity and MGMT promoter methylation status were assayed in a centralized laboratory. RESULTS: OS and PFS did not differ by high or low tumor CcO activity, and the prognostic validity of MGMT promoter methylation was confirmed. Notably, a planned exploratory analysis suggested that the combination of low CcO activity and MGMT promoter methylation in tumors may be predictive of long-term survival. CONCLUSIONS: Tumor CcO activity alone was not confirmed as a prognostic marker in GBM patients. However, the combination of low CcO activity and methylated MGMT promoter may reveal a subgroup of GBM patients with improved long-term survival that warrants further evaluation. Our work also demonstrates the importance of performing large, multi-institutional, prospective studies to validate biomarkers. We also discuss lessons learned in assembling such studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA