Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407910

RESUMO

We propose obtaining TiO2 films by ICPCVD for the fabrication of low-loss waveguides. The challenge is to produce a dense and homogeneous layer with a high refractive index and low absorption in the visible range. Crystallized layers with features such as grains and amorphous layers have a rather low index for the application targeted, so we aimed for an intermediate state. We investigated the influence of plasma power, pressure, deposition time and annealing temperature on the structural, crystalline, and optical properties in order to tailor them. We showed that crystallization into rutile at the nanoscale occurred during deposition and under wisely chosen conditions, we reached a refractive index of 2.5 at 630 nm without creating interfaces or inhomogeneity in the layer depth. Annealing permits one to further increase the index, up to 2.6. TEM analysis on one sample before and after annealing confirmed the nano-polycrystallization and presence of both anatase and rutile phases and we considered that this intermediate state of crystallization was the best compromise for guided optics.

2.
Sci Rep ; 8(1): 13380, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190537

RESUMO

Co-integrating CMOS plasmonics and photonics became the "sweet spot" to hit in order to combine their benefits and allow for volume manufacturing of plasmo-photonic integrated circuits. Plasmonics can naturally interface photonics with electronics while offering strong mode confinement, enabling in this way on-chip data interconnects when tailored to single-mode waveguides, as well as high-sensitivity biosensors when exposing Surface-Plasmon-Polariton (SPP) modes in aqueous environment. Their synergy with low-loss photonics can tolerate the high plasmonic propagation losses in interconnect applications, offering at the same time a powerful portfolio of passive photonic functions towards avoiding the use of bulk optics for SPP excitation and facilitating compact biosensor setups. The co-integration roadmap has to proceed, however, over the utilization of fully CMOS compatible material platforms and manufacturing processes in order to allow for a practical deployment route. Herein, we demonstrate for the first time Aluminum plasmonic waveguides co-integrated with Si3N4 photonics using CMOS manufacturing processes. We validate the data carrying credentials of CMOS plasmonics with 25 Gb/s data traffic and we confirm successful plasmonic propagation in both air and water-cladded waveguide configurations. This platform can potentially fuel the deployment of co-integrated plasmonic and photonic structures using CMOS processes for biosensing and on-chip interconnect applications.


Assuntos
Alumínio , Óptica e Fotônica , Compostos de Silício
3.
Beilstein J Nanotechnol ; 9: 1964-1976, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116688

RESUMO

Background: Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions. Results: We combine multiple nanofabrication steps to realize in-plane tunneling junctions made of two gold electrodes, separated by a sub-nanometer gap acting as the feedgap of an optical antenna. We electrically characterize the transport properties of the junctions in the light of the Fowler-Nordheim representation and the Simmons model for electron tunneling. We demonstrate light emission from the feedgap upon electron injection and show examples of how this nanoscale light source can be coupled to waveguiding structures. Conclusion: Electromigrated in-plane tunneling optical antennas feature interesting properties with their unique functionality enabling interfacing electrons and photons at the atomic scale and with the same device. This technology may open new routes for device-to-device communication and for interconnecting an electronic control layer to a photonic architecture.

4.
Nano Lett ; 14(5): 2330-8, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24697629

RESUMO

We introduce strongly coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical gap antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion involving d-band electrons and demonstrate that a simple two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.

5.
Opt Express ; 21(5): 5300-8, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23482101

RESUMO

We report on monitoring the mode power in dielectric-loaded surface plasmon polariton waveguides (DLSPPWs) by measuring the resistance of gold electrodes, supporting the DLSPPW mode propagation, with internal (on-chip) Wheatstone bridges. The investigated DLSPPW configuration consisted of 1-µm-thick and 10-µm-wide cycloaliphatic acrylate polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-um wide gold stripe, all supported by a ~1.7-µm-thick Cytop layer deposited on a Si wafer. The fabricated DLSPPW power monitors were characterized at telecom wavelengths, showing very high responsivities reaching up to ~6.4 µV/µW (for a bias voltage of 245 mV) and the operation bandwidth exceeding 40 kHz.

6.
Colloids Surf B Biointerfaces ; 104: 289-93, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23334183

RESUMO

Pulmonary surfactant is a complex mixture of phospholipids and proteins and forms a thin film at the lung alveolar interface separating air from liquid environment. The film reduces the work of breathing during repeatable compressions of the alveoli which form a characteristic multilayer upon compression. In this work, we investigated the structure of bovine lipid extract surfactant (BLES). We analysed the BLES films by atomic force microscopy (AFM) and spectroscopic ellipsometry (SE) in order to provide combined characterization of both morphology and thickness of surfactant films. We show how the spectroscopic ellipsometry can be used to supplement the data obtained by AFM. We demonstrate that indium tin oxide (ITO) substrate used for spectroscopic ellipsometry is preferable over glass substrate to enhance the optical contrast. An optical model was proposed to account for non-uniform film morphology. We obtained good correlations between the multilayer surface coverage, determined by both AFM and SE. SE measures the thickness of the first uniform monolayer as 2.6 nm that cannot be achieved by AFM imaging alone.


Assuntos
Lipídeos/análise , Proteínas/análise , Tensoativos/análise , Compostos de Estanho/química , Animais , Bovinos , Microscopia de Força Atômica , Análise Espectral , Propriedades de Superfície
7.
J Vis Exp ; (82): e51048, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24378340

RESUMO

Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support. In this context, metal nanowires are especially desirable for realizing dense routing networks. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires randomly distributed on a glass substrate. The positions of the nanowire ends with respect to predefined landmarks are precisely located using standard optical transmission microscopy before encapsulation in an electron-sensitive resist. Trenches representing the electrode layout are subsequently designed by electron-beam lithography. Metal electrodes are then fabricated by thermally evaporating a Cr/Au layer followed by a chemical lift-off. The contacted silver nanowires are finally transferred to a leakage radiation microscope for surface plasmon excitation and characterization. Surface plasmons are launched in the nanowires by focusing a near infrared laser beam on a diffraction-limited spot overlapping one nanowire extremity. For sufficiently large nanowires, the surface plasmon mode leaks into the glass substrate. This leakage radiation is readily detected, imaged, and analyzed in the different conjugate planes in leakage radiation microscopy. The electrical terminals do not affect the plasmon propagation. However, a current-induced morphological deterioration of the nanowire drastically degrades the flow of surface plasmons. The combination of surface plasmon leakage radiation microscopy with a simultaneous analysis of the nanowire electrical transport characteristics reveals the intrinsic limitations of such plasmonic circuitry.


Assuntos
Nanopartículas Metálicas/química , Nanofios/química , Prata/química , Condutividade Elétrica , Óptica e Fotônica/métodos , Ressonância de Plasmônio de Superfície/métodos
8.
Nanotechnology ; 23(44): 444008, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23080354

RESUMO

We report detailed experimental studies of compact fiber-coupled dielectric-loaded plasmonic waveguide components-Mach-Zehnder interferometers (MZIs) and directional couplers (DCs)-whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold stripe of dielectric-loaded plasmonic waveguides. The effect of the gaps isolating the heated part of the waveguide from the rest of the structure was examined showing the presence of a Fabry-Pérot cavity in this MZI arm. Wavelength-dependent modulation is demonstrated with MZI-based components, and wavelength dependent low power (∼0.92 mW) rerouting is achieved with DC switches. Furthermore, simulations were performed to confirm the switching characteristics of the components.

9.
Sci Rep ; 2: 652, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973502

RESUMO

With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the smallest TO DLSPP-based Mach-Zehnder interferometric switch reported so far and showing its successful performance in 4×10 Gb/s low-power and fast switching operation. The demonstration of the WDM-enabling characteristics of active plasmonic circuits with an ultra-low power × response time product represents a crucial milestone in the development of active plasmonics towards real telecom and datacom applications, where low-energy and fast TO operation with small-size circuitry is targeted.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Interferometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Interferometria/métodos , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície/métodos , Telecomunicações/instrumentação , Transdutores
10.
Opt Express ; 19(4): 2972-8, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369121

RESUMO

We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Using single-mode polarization-maintaining fiber for in- and out-coupling of radiation, DLSPPW mode power monitoring at telecom wavelengths is realized with the responsivities of up to ~1.8 µV/µW (showing weak wavelength dependence) being evaluated for a bias voltage of 1 V.

11.
ACS Nano ; 5(3): 1630-8, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21366249

RESUMO

In the present work, the combination of chemical immobilization with electron beam lithography enables the production of sensitive and reproducible SERS-active areas composed of stochastic arrangements of gold nanoparticles. The number of nanoparticles was varied from 2 to 500. Thereby a systematic analysis of these SERS-active areas allows us to study SERS efficiency as a function of the number of nanoparticles. We found that the experimental parameters are critical, in particular the size of the SERS-active area must be comparable to the effective area of excitation to obtained reproducible SERS measurements. The sensitivity has also been studied by deducing the number of NPs that generate the enhancement. With this approach we demonstrates that the maximum enhancement, the best sensitivity, is obtained with the smallest number of nanoparticles that is resonant at a given excitation wavelength.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Análise Espectral Raman/métodos , Luz , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície
12.
Opt Express ; 19(27): 26423-8, 2011 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-22274227

RESUMO

We demonstrate optical fiber-pigtailed temperature sensors based on dielectric-loaded surface plasmon-polariton waveguide-ring resonators (DLSPP-WRRs), whose transmission depends on the ambient temperature. The DLSPP-WRR-based temperature sensors represent polymer ridge waveguides (~1×1 µm(2) in cross section) forming 5-µm-radius rings coupled to straight waveguides fabricated by UV-lithography on a 50-nm-thick gold layer atop a 2.3-µm-thick CYTOP layer covering a Si wafer. A broadband light source is used to characterize the DLSPP-WRR wavelength-dependent transmission in the range of 1480-1600 nm and to select the DLSPP-WRR component for temperature sensing. In- and out-coupling single-mode optical fibers are then glued to the corresponding access (photonic) waveguides made of 10-µm-wide polymer ridges. The sample is heated from 21°C to 46 °C resulting in the transmission change of ~0.7 dB at the operation wavelength of ~1510 nm. The minimum detectable temperature change is estimated to be ~5.1∙10(-3) °C for the bandwidth of 1 Hz when using standard commercial optical detectors.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Termografia/instrumentação , Transdutores , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
13.
Opt Express ; 18(5): 5314-9, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20389544

RESUMO

Fiber in- and out-coupling of radiation guided by dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) is realized using intermediate tapered dielectric waveguides. The waveguide structures fabricated by large-scale UV-lithography consist of 1-microm-thick polymer ridges tapered from 10-microm-wide ridges deposited directly on a magnesium fluoride substrate to 1-microm-wide ridges placed on a 50-nm-thick and 100-microm-wide gold stripe. Using fiber-to-fiber transmission measurements at telecom wavelengths, the performance of straight and bent DLSPPWs is characterized demonstrating the overall insertion loss below 24 dB, half of which is attributed to the DLSPPW loss of propagation over the 100-microm-long distance.

14.
Opt Express ; 18(2): 1207-16, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20173944

RESUMO

We report preliminary results on the development of compact (length < 100 microm) fiber-coupled dielectric-loaded plasmonic waveguide components, including Mach-Zehnder interferometers (MZIs), waveguide-ring resonators (WRRs) and directional couplers (DCs), whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold stripes of dielectric-loaded plasmonic waveguides. Strong output modulation (> 20%) is demonstrated with MZI- and WRR-based components, and efficient (approximately 30%) rerouting is achieved with DC switches.


Assuntos
Eletrônica/instrumentação , Interferometria/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Impedância Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura
15.
Nano Lett ; 9(8): 2935-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19719111

RESUMO

The spatial confinement of surface plasmon polaritons is a promising route for realizing optical on-board interconnects. However, mode losses increase with the confinement factor. To overcome this road block, we investigate propagation assisted by stimulated emission in a polymer strip-loaded plasmonic waveguide doped with nanocrystals. We achieve 27% increase of the propagation length at telecom wavelength corresponding to a 160 cm(-1) optical gain coefficient. Such a configuration is a step toward integrated plasmonic amplifiers.

16.
Opt Lett ; 34(3): 310-2, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19183641

RESUMO

We consider wavelength-selective splitting of radiation using directional couplers (DCs) formed by dielectric-loaded surface-plasmon-polariton waveguides (DLSPPWs). The DCs were fabricated by depositing sub-wavelength-sized polymer ridges on a gold film using large-scale UV photolithography and characterized at telecommunications wavelengths with near-field microscopy. We demonstrate a DLSPPW-based 45-microm-long DC comprising 3 microm offset S bends and 25-microm-long parallel waveguides that changes from the "through" state at 1500 nm to 3 dB splitting at 1600 nm, and show that a 50.5-microm-long DC should enable complete separation of the radiation channels at 1400 and 1620 nm. The DC performance is found to be in good agreement with full vectorial three-dimensional finite-element simulations.

17.
Opt Express ; 17(4): 2968-75, 2009 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-19219201

RESUMO

Using near-field microscopy, the performance of dielectric-loaded plasmonic waveguide-ring resonators (WRRs) operating at telecom wavelengths is investigated for various waveguide-ring separations. It is demonstrated that compact (footprint approximately 150 microm(2)) and efficient (extinction ratio approximately 13 dB) WRR-based filters can be realized using UV-lithography. The WRR wavelength responses measured and calculated using the effective-index method are found in good agreement.


Assuntos
Dispositivos Ópticos , Polímeros/química , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Opt Express ; 16(18): 13585-92, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18772968

RESUMO

The design, fabrication, characterization, and modeling of basic building blocks of plasmonic circuitry based on dielectric-loaded surface polariton waveguides, such as bends, splitters, and Mach-Zehnder interferometers are presented. The plasmonic components are realized by depositing subwavelength dielectric ridges on a smooth gold film using mass-production-compatible UV-photolithography. The near-field characterization at telecommunication wavelengths shows the strong mode confinement and low radiation and bend losses. The performance of the devices is found in good agreement with results obtained by full vectorial three-dimensional finite element simulations.


Assuntos
Desenho Assistido por Computador , Modelos Teóricos , Óptica e Fotônica/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
19.
Ultramicroscopy ; 107(10-11): 1111-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17582684

RESUMO

Measuring the thickness of biological films remains a difficult task when using differential measurements by atomic force microscopy (AFM). The use of microstructured substrates combined with a selective adsorption constitutes an alternative to tribological measurements. The statistical thickness analysis of biological layers, especially via the dispersion measurements, can provide a way to quantify the molecular orientation. AFM thicknesses were then compared with those obtained optically by spectroscopic ellipsometry (SE) and surface plasmon resonance enhanced ellipsometry (SPREE). The biolayers could then be modeled using a vertical gradient of optical index, which reflects height dispersions. Thiol-modified DNA strands of various lengths account for a good biological model for the study of the strand motion in air and in liquid.


Assuntos
DNA/química , DNA/ultraestrutura , Membranas Artificiais , Microscopia de Força Atômica/métodos , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA