Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7049, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120674

RESUMO

Discovering synthetic lethal (SL) gene partners of cancer genes is an important step in developing cancer therapies. However, identification of SL interactions is challenging, due to a large number of possible gene pairs, inherent noise and confounding factors in the observed signal. To discover robust SL interactions, we devised SLIDE-VIP, a novel framework combining eight statistical tests, including a new patient data-based test iSurvLRT. SLIDE-VIP leverages multi-omics data from four different sources: gene inactivation cell line screens, cancer patient data, drug screens and gene pathways. We applied SLIDE-VIP to discover SL interactions between genes involved in DNA damage repair, chromatin remodeling and cell cycle, and their potentially druggable partners. The top 883 ranking SL candidates had strong evidence in cell line and patient data, 250-fold reducing the initial space of 200K pairs. Drug screen and pathway tests provided additional corroboration and insights into these interactions. We rediscovered well-known SL pairs such as RB1 and E2F3 or PRKDC and ATM, and in addition, proposed strong novel SL candidates such as PTEN and PIK3CB. In summary, SLIDE-VIP opens the door to the discovery of SL interactions with clinical potential. All analysis and visualizations are available via the online SLIDE-VIP WebApp.


Assuntos
Neoplasias , Mutações Sintéticas Letais , Humanos , Multiômica , Montagem e Desmontagem da Cromatina , Neoplasias/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Dano ao DNA/genética
2.
Genome Biol ; 23(1): 128, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681161

RESUMO

Copy number alterations constitute important phenomena in tumor evolution. Whole genome single-cell sequencing gives insight into copy number profiles of individual cells, but is highly noisy. Here, we propose CONET, a probabilistic model for joint inference of the evolutionary tree on copy number events and copy number calling. CONET employs an efficient, regularized MCMC procedure to search the space of possible model structures and parameters. We introduce a range of model priors and penalties for efficient regularization. CONET reveals copy number evolution in two breast cancer samples, and outperforms other methods in tree reconstruction, breakpoint identification and copy number calling.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA