Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nat Commun ; 14(1): 5652, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704606

RESUMO

The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.


Assuntos
Divisão do Núcleo Celular , Segregação de Cromossomos , Animais , Plasmodium berghei/genética , Proliferação de Células , Meiose , Aurora Quinases , Eucariotos
2.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778504

RESUMO

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .

3.
Res Sq ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798191

RESUMO

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.

4.
Neuropathol Appl Neurobiol ; 49(1): e12885, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709989

RESUMO

AIMS: N6 -methyladenosine modification of RNA (m6 A) regulates translational control, which may influence neuronal dysfunction underlying neurodegenerative diseases. METHODS: Using microscopy and a machine learning approach, we performed cellular profiling of m6 A-RNA abundance and YTHDF1/YTHDF3 m6 A reader expression within four regions of the human brain from non-affected individuals and individuals with Parkinson's disease, dementia with Lewy bodies or mild cognitive impairment (MCI). RESULTS: In non-diseased tissue, we found that m6 A-modified RNAs showed cell-type and sub-compartment-specific variation. YTHDF1 and YTHDF3 showed opposing expression patterns in the cerebellum and the frontal and cingulate cortices. Machine learning quantitative image analysis revealed that m6 A-modified transcripts were significantly altered in localisation and abundance in disease tissue with significant decreases in m6 A-RNAs in Parkinson's disease, and significant increases in m6 A-RNA abundance in dementia with Lewy bodies. MCI tissue showed variability across regions but similar to DLB; in brain areas with an overall significant increase in m6 A-RNAs, modified RNAs within dendritic processes were reduced. Using mass spectrometry proteomic datasets to corroborate our findings, we found significant changes in YTHDF3 and m6 A anti-reader protein abundance in Alzheimer's disease (AD) and asymptomatic AD/MCI tissue and correlation with cognitive resilience. CONCLUSIONS: These results provide evidence for disrupted m6 A regulation in Lewy body diseases and a plausible mechanism through which RNA processing could contribute to the formation of Lewy bodies and other dementia-associated pathological aggregates. The findings suggest that manipulation of epitranscriptomic processes influencing translational control may lead to new therapeutic approaches for neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Metilação , Corpos de Lewy/patologia , Proteômica , Doença de Alzheimer/patologia , Encéfalo/patologia , RNA/metabolismo , RNA Mensageiro/metabolismo
5.
Life Sci Alliance ; 5(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35550346

RESUMO

The centriole/basal body (CBB) is an evolutionarily conserved organelle acting as a microtubule organising centre (MTOC) to nucleate cilia, flagella, and the centrosome. SAS4/CPAP is a conserved component associated with BB biogenesis in many model flagellated cells. Plasmodium, a divergent unicellular eukaryote and causative agent of malaria, displays an atypical, closed mitosis with an MTOC (or centriolar plaque), reminiscent of an acentriolar MTOC, embedded in the nuclear membrane. Mitosis during male gamete formation is accompanied by flagella formation. There are two MTOCs in male gametocytes: the acentriolar nuclear envelope MTOC for the mitotic spindle and an outer centriolar MTOC (the basal body) that organises flagella assembly in the cytoplasm. We show the coordinated location, association and assembly of SAS4 with the BB component, kinesin-8B, but no association with the kinetochore protein, NDC80, indicating that SAS4 is part of the BB and outer centriolar MTOC in the cytoplasm. Deletion of the SAS4 gene produced no phenotype, indicating that it is not essential for either male gamete formation or parasite transmission.


Assuntos
Parasitos , Plasmodium , Animais , Corpos Basais/metabolismo , Centríolos/metabolismo , Masculino , Centro Organizador dos Microtúbulos/metabolismo
6.
Mol Psychiatry ; 26(12): 7141-7153, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663904

RESUMO

Synaptic plasticity processes, which underlie learning and memory formation, require RNA to be translated local to synapses. The synaptic tagging hypothesis has previously been proposed to explain how mRNAs are available at specific activated synapses. However how RNA is regulated, and which transcripts are silenced or processed as part of the tagging process is still unknown. Modification of RNA by N6-methyladenosine (m6A/m) influences the cellular fate of mRNA. Here, by advanced microscopy, we showed that m6A demethylation by the eraser protein ALKBH5 occurs at active synaptic ribosomes and at synapses during short term plasticity. We demonstrated that at activated glutamatergic post-synaptic sites, both the YTHDF1 and YTHDF3 reader and the ALKBH5 eraser proteins increase in co-localisation to m6A-modified RNAs; but only the readers showed high co-localisation to modified RNAs during late-stage plasticity. The YTHDF1 and YTHFDF3 readers also exhibited differential roles during synaptic maturation suggesting that temporal and subcellular abundance may determine specific function. m6A-sequencing of human parahippocampus brain tissue revealed distinct white and grey matter m6A methylome profiles indicating that cellular context is a fundamental factor dictating regulated pathways. However, in both neuronal and glial cell-rich tissue, m6A effector proteins are themselves modified and m6A epitranscriptional and posttranslational modification processes coregulate protein cascades. We hypothesise that the availability m6A effector protein machinery in conjunction with RNA modification, may be important in the formation of condensed synaptic nanodomain assemblies through liquid-liquid phase separation. Our findings support that m6A demethylation by ALKBH5 is an intrinsic component of the synaptic tagging hypothesis and a molecular switch which leads to alterations in the RNA methylome, synaptic dysfunction and potentially reversible disease states.


Assuntos
Epigenoma , Sinapses , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Encéfalo/metabolismo , Desmetilação , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
7.
Nat Chem ; 13(12): 1200-1206, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34635814

RESUMO

The micron-scale movement of biomolecules along supramolecular pathways, mastered by nature, is a remarkable system requiring strong yet reversible interactions between components under the action of a suitable stimulus. Responsive microscopic systems using a variety of stimuli have demonstrated impressive relative molecular motion. However, locating the position of a movable object that travels along self-assembled fibres under an irresistible force has yet to be achieved. Here, we describe a purely supramolecular system where a molecular 'traveller' moves along a 'path' over several microns when irradiated with visible light. Real-time imaging of the motion in the solvated state using total internal reflection fluorescence microscopy shows that anionic porphyrin molecules move along the fibres of a bis-imidazolium gel upon irradiation. Slight solvent changes mean movement and restructuring of the fibres giving microtoroids, indicating control of motion by fibre mechanics with solvent composition. The insight provided here may lead to the development of artificial travellers that can perform catalytic and other functions.

8.
Cells ; 10(9)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572062

RESUMO

Low-power sonication is widely used to disaggregate extracellular vesicles (EVs) after isolation, however, the effects of sonication on EV samples beyond dispersion are unclear. The present study analysed the characteristics of EVs collected from mesenchymal stem cells (MSCs) after sonication, using a combination of transmission electron microscopy, direct stochastic optical reconstruction microscopy, and flow cytometry techniques. Results showed that beyond the intended disaggregation effect, sonication using the lowest power setting available was enough to alter the size distribution, membrane integrity, and uptake of EVs in cultured cells. These results point to the need for a more systematic analysis of sonication procedures to improve reproducibility in EV-based cellular experiments.


Assuntos
Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/ultraestrutura , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Microscopia Eletrônica de Transmissão/métodos , Sonicação/métodos , Animais , Camundongos
9.
Methods Mol Biol ; 2198: 227-254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822036

RESUMO

Computational analysis of digital images provides a robust and unbiased way to compare and investigate the amount (pixel intensity) and spatial distribution of DNA modifications. The DNA modifications in the cells are visualized by fluorescence labeling and the images are captured by confocal microscopy. The key advantage of the confocal over conventional microscope is that it images only a thin optical section around the focal plane of the microscope therefore it can precisely record signals only from the focal plane inside the nucleus. In this chapter, we will describe in detail several analysis methods to visualize and quantify the DNA modification signals including how to investigate codistribution of such signals when using dual labeling.


Assuntos
Metilação de DNA/imunologia , Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Animais , Fenômenos Bioquímicos , DNA/metabolismo , Fluorescência , Humanos , Microscopia de Fluorescência/métodos
10.
J Cell Sci ; 134(5)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32501284

RESUMO

Eukaryotic cell proliferation requires chromosome replication and precise segregation to ensure daughter cells have identical genomic copies. Species of the genus Plasmodium, the causative agents of malaria, display remarkable aspects of nuclear division throughout their life cycle to meet some peculiar and unique challenges to DNA replication and chromosome segregation. The parasite undergoes atypical endomitosis and endoreduplication with an intact nuclear membrane and intranuclear mitotic spindle. To understand these diverse modes of Plasmodium cell division, we have studied the behaviour and composition of the outer kinetochore NDC80 complex, a key part of the mitotic apparatus that attaches the centromere of chromosomes to microtubules of the mitotic spindle. Using NDC80-GFP live-cell imaging in Plasmodium berghei, we observe dynamic spatiotemporal changes during proliferation, including highly unusual kinetochore arrangements during sexual stages. We identify a very divergent candidate for the SPC24 subunit of the NDC80 complex, previously thought to be missing in Plasmodium, which completes a canonical, albeit unusual, NDC80 complex structure. Altogether, our studies reveal the kinetochore to be an ideal tool to investigate the non-canonical modes of chromosome segregation and cell division in Plasmodium.


Assuntos
Parasitos , Plasmodium , Animais , Divisão Celular , Segregação de Cromossomos/genética , Cinetocoros , Microtúbulos , Mitose/genética , Plasmodium/genética , Fuso Acromático/genética
11.
J Control Release ; 317: 118-129, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31678096

RESUMO

Supramolecular gels have recently emerged as promising biomaterials for the delivery of a wide range of bioactive molecules, from small hydrophobic drugs to large biomolecules such as proteins. Although it has been demonstrated that each encapsulated molecule has a different release profile from the hydrogel, so far diffusion and steric impediment have been identified as the only mechanisms for the release of molecules from supramolecular gels. Erosion of a supramolecular gel has not yet been reported to contribute to the release profiles of encapsulated molecules. Here, we use a novel nucleoside-based supramolecular gel as a drug delivery system for proteins with different properties and a hydrophobic dye and describe for the first time how these materials interact, encapsulate and eventually release bioactive molecules through an erosion-based process. Through fluorescence microscopy and spectroscopy as well as small angle X-ray scattering, we show that the encapsulated molecules directly interact with the hydrogel fibres - rather than being physically entrapped in the gel network. The ability of these materials to protect proteins against enzymatic degradation is also demonstrated here for the first time. In addition, the released proteins were proven to be functional in vitro. Real-time fluorescence microscopy together with macroscopic release studies confirm that erosion is the key release mechanism. In vivo, the gel completely degrades after two weeks and no signs of inflammation are detected, demonstrating its in vivo safety. By establishing the contribution of erosion as a key driving force behind the release of bioactive molecules from supramolecular gels, this work provides mechanistic insight into the way molecules with different properties are encapsulated and released from a nucleoside-based supramolecular gel and sets the basis for the design of more tailored supramolecular gels for drug delivery applications.


Assuntos
Hidrogéis , Nucleosídeos , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas
12.
Methods Mol Biol ; 2041: 163-181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646488

RESUMO

Fluorescent antagonists offer the ability to interrogate G protein-coupled receptor pharmacology. With resonance energy transfer techniques, fluorescent antagonists can be implemented to monitor receptor-ligand interactions using assays originally designed for radiolabeled probes. The fluorescent nature of these antagonists also enables the localization and distribution of the receptors to be visualized in living cells. Here, we describe the generation of modified purinergic receptors with the NanoLuc luciferase or SNAP-tag, using the P1 adenosine A3 receptor as an example. We also describe the procedure of characterizing a novel fluorescent purinergic antagonist using ligand-mediated bioluminescence resonance energy transfer assays and confocal microscopy.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Microscopia de Fluorescência/métodos , Agonistas do Receptor Purinérgico P1/metabolismo , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1/metabolismo , Fluorescência , Células HEK293 , Humanos , Luciferases/metabolismo , Ligação Proteica , Multimerização Proteica , Agonistas do Receptor Purinérgico P1/química , Receptor A3 de Adenosina/química , Receptores Purinérgicos P1/química , Transdução de Sinais
13.
Pain ; 160(11): 2641-2650, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425488

RESUMO

Spinal hyperexcitability is a key event in the development of persistent pain, and arises partly from alterations in the number and localization of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors. However, determining precisely where these changes occur is challenging due to the requirement for multiplex labelling and nanoscale resolution. The recent development of super-resolution light microscopy provides new tools to address these challenges. Here, we apply combined confocal/direct STochastic Optical Reconstruction Microscopy (dSTORM) to reveal changes in calcium-permeable subunits of AMPA-type glutamate receptors (GluA1) at identified spinal cord dorsal horn (SCDH) peptidergic axon terminals in a model of inflammatory pain. L4/5 lumbar spinal cord was collected from adult male C57BL/6J mice 24 hours after unilateral hind paw injection of saline or 1% carrageenan (n = 6/group). Tissue was immunolabelled for markers of peptidergic axon terminals (substance P; SP), presynaptic active zones (Bassoon), and GluA1. Direct stochastic optical reconstruction microscopy revealed a 59% increase in total GluA1 immunolabelling in the SCDH in the carrageenan group, which was not detected by confocal microscopy. Cell type-specific analyses identified a 10-fold increase in GluA1 localized to SP structures, and identified GluA1 nanodomains that scaled with behavioural hypersensitivity, and were associated with synaptic release sites. These findings demonstrate that dSTORM has the sensitivity and power to detect nanoscale anatomical changes in the SCDH, and provides new evidence for synaptic insertion of GluA1-AMPA-Rs at spinal peptidergic nociceptive terminals in a model of inflammatory pain.


Assuntos
Cálcio/metabolismo , Inflamação/metabolismo , Dor/fisiopatologia , Receptores de AMPA/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Células do Corno Posterior/metabolismo , Terminações Pré-Sinápticas/metabolismo , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Sinapses/metabolismo
14.
Biomimetics (Basel) ; 4(3)2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295946

RESUMO

Mesenchymal stem cells (MSCs) are progenitors for bone-forming osteoblasts and lipid-storing adipocytes, two major lineages co-existing in bone marrow. When isolated in vitro, these stem cells recapitulate osteoblast or adipocyte formation if treated with specialised media, modelling how these lineages interact in vivo. Osteogenic differentiation is characterised by mineral deposits accumulating in the extracellular matrix, typically assessed using histological techniques. Adipogenesis occurs with accumulation of intracellular lipids that can be routinely visualised by Oil Red O staining. In both cases, staining requires cell fixation and is thus limited to end-point assessments. Here, a vital staining approach was developed to simultaneously detect mineral deposits and lipid droplets in differentiating cultures. Stem cells induced to differentiate produced mixed cultures containing adipocytes and bone-like nodules, and after two weeks live cultures were incubated with tetracycline hydrochloride and Bodipy to label mineral- and lipid-containing structures, respectively. Fluorescence microscopy showed the simultaneous visualisation of mineralised areas and lipid-filled adipocytes in live cultures. Combined with the nuclear stain Hoechst 33258, this approach further enabled live confocal imaging of adipogenic cells interspersed within the mineralised matrix. This multiplex labelling was repeated at subsequent time-points, demonstrating the potential of this new approach for the real-time high-precision imaging of live stem cells.

15.
Biochim Biophys Acta Bioenerg ; 1860(8): 628-639, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229569

RESUMO

Trans-plasma membrane electron transfer (tMPET) is a process by which reducing equivalents, either electrons or reductants like ascorbic acid, are exported to the extracellular environment by the cell. TPMET is involved in a number of physiological process and has been hypothesised to play a role in the redox regulation of cancer metabolism. Here, we use a new electrochemical assay to elucidate the 'preference' of cancer cells for different trans tPMET systems. This aids in proving a biochemical framework for the understanding of tPMET role, and for the development of novel tPMET-targeting therapeutics. We have delineated the mechanism of tPMET in 3 lung cancer cell models to show that the external electron transfer is orchestrated by ascorbate mediated shuttling via tPMET. In addition, the cells employ a different, non-shuttling-based mechanism based on direct electron transfer via Dcytb. Results from our investigations indicate that tPMETs are used differently, depending on the cell type. The data generated indicates that tPMETs may play a fundamental role in facilitation of energy reprogramming in malignant cells, whereby tPMETs are utilised to supply the necessary energy requirement when mitochondrial stress occurs. Our findings instruct a deeper understanding of tPMET systems, and show how different cancer cells may preferentially use distinguishable tPMET systems for cellular electron transfer processes.


Assuntos
Membrana Celular/metabolismo , Transporte de Elétrons , Neoplasias Pulmonares/patologia , Ácido Ascórbico/metabolismo , Linhagem Celular Tumoral , Grupo dos Citocromos b , Metabolismo Energético , Humanos , Neoplasias Pulmonares/metabolismo , Oxirredução , Oxirredutases
16.
Biol Open ; 8(1)2019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30541825

RESUMO

Centrins are calmodulin-like phosphoproteins present in the centrosome and play an active role in the duplication, separation and organization of centrosomal structures such as the microtubule-organizing centre (MTOC) during mitosis. They are also major components of the basal body of flagella and cilia. In Plasmodium spp., the parasite that causes malaria, mitosis is closed during asexual replication and the MTOC is embedded within the intact nuclear membrane. The MTOC has been named the centriolar plaque and is similar to the spindle pole body in yeast. In all phases of asexual replication, repeated rounds of nuclear division precede cell division. However, our knowledge of the location and function of centrins during this process is limited. Previous studies have identified four putative centrins in the human parasite P lasmodium falciparum. We report here the cellular localization of an alveolate-specific centrin (PbCEN-4) during the atypical cell division of asexual replicative stages, using live cell imaging with the rodent malaria parasite P. berghei as a model system. We show that this centrin forms a multi-protein complex with other centrins, but is dispensable for parasite proliferation.

17.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1891-1900, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30290236

RESUMO

Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50 nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs. Using a photo-switchable lipid dye, d-STORM imaging enabled rapid detection of EVs down to 20-30 nm in size with higher sensitivity and lower variability compared to EM, NTA and TRPS techniques. Imaging of EV uptake by live stem cells in culture further confirmed the potential of this approach for downstream cell biology applications and for the analysis of vesicle-based cell-cell communication.


Assuntos
Micropartículas Derivadas de Células/ultraestrutura , Células-Tronco/citologia , Animais , Células Cultivadas , Camundongos , Microscopia Confocal , Nanotecnologia , Tamanho da Partícula
18.
Sci Rep ; 8(1): 5885, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651162

RESUMO

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are human neuromuscular disorders associated with mutations of simple repetitive sequences in affected genes. The abnormal expansion of CTG repeats in the 3'-UTR of the DMPK gene elicits DM1, whereas elongated CCTG repeats in intron 1 of ZNF9/CNBP triggers DM2. Pathogenesis of both disorders is manifested by nuclear retention of expanded repeat-containing RNAs and aberrant alternative splicing. The precise determination of absolute numbers of mutant RNA molecules is important for a better understanding of disease complexity and for accurate evaluation of the efficacy of therapeutic drugs. We present two quantitative methods, Multiplex Ligation-Dependent Probe Amplification and droplet digital PCR, for studying the mutant DMPK transcript (DMPKexpRNA) and the aberrant alternative splicing in DM1 and DM2 human tissues and cells. We demonstrate that in DM1, the DMPKexpRNA is detected in higher copy number than its normal counterpart. Moreover, the absolute number of the mutant transcript indicates its low abundance with only a few copies per cell in DM1 fibroblasts. Most importantly, in conjunction with fluorescence in-situ hybridization experiments, our results suggest that in DM1 fibroblasts, the vast majority of nuclear RNA foci consist of a few molecules of DMPKexpRNA.


Assuntos
Fibroblastos/metabolismo , Reação em Cadeia da Polimerase Multiplex/métodos , Distrofia Miotônica/genética , Miotonina Proteína Quinase/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Processamento Alternativo , Éxons , Fibroblastos/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Íntrons , Reação em Cadeia da Polimerase Multiplex/normas , Distrofia Miotônica/classificação , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/metabolismo , Cultura Primária de Células , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Índice de Gravidade de Doença , Repetições de Trinucleotídeos
19.
J Vis Exp ; (127)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28930980

RESUMO

For several decades, 5-methylcytosine (5mC) has been thought to be the only DNA modification with a functional significance in metazoans. The discovery of enzymatic oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) as well as detection of N6-methyladenine (6mA) in the DNA of multicellular organisms provided additional degrees of complexity to the epigenetic research. According to a growing body of experimental evidence, these novel DNA modifications may play specific roles in different cellular and developmental processes. Importantly, as some of these marks (e. g. 5hmC, 5fC and 5caC) exhibit tissue- and developmental stage-specific occurrence in vertebrates, immunochemistry represents an important tool allowing assessment of spatial distribution of DNA modifications in different biological contexts. Here the methods for computational analysis of DNA modifications visualized by immunostaining followed by confocal microscopy are described. Specifically, the generation of 2.5 dimension (2.5D) signal intensity plots, signal intensity profiles, quantification of staining intensity in multiple cells and determination of signal colocalization coefficients are shown. Collectively, these techniques may be operational in evaluating the levels and localization of these DNA modifications in the nucleus, contributing to elucidating their biological roles in metazoans.


Assuntos
DNA/genética , Microscopia Confocal/métodos , Humanos , Imuno-Histoquímica
20.
Stem Cell Res ; 23: 33-38, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28668644

RESUMO

The ability of iPSCs (induced pluripotent stem cells) to generate any cell type in the body makes them valuable tools for cell replacement therapies. However, differentiation of iPSCs can be demanding, slow and variable. During differentiation chromatin is re-organized and silent dense heterochromatin becomes tethered to the nuclear periphery by processes involving the nuclear lamina and proteins of the INM (inner nuclear membrane). The INM protein, Samp1 (Spindle Associated Membrane Protein 1) interacts with Lamin A/C and the INM protein Emerin, which has a chromatin binding LEM (Lap2-Emerin-Man1)-domain. In this paper we investigate if Samp1 can play a role in the differentiation of iPSCs. Samp1 levels increased as differentiating iPSCs started to express Lamin A/C. Interestingly, even under pluripotent culturing conditions, ectopic expression of Samp1 induced a rapid differentiation of iPSCs, of which some expressed the neuronal marker ßIII-tubulin already after 6days. This suggests that Samp1 is involved in early differentiation of iPSCs and could potentially be explored as a tool to promote progression of the differentiation process.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Proteínas Nucleares , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA