Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560238

RESUMO

Neuromorphic vision sensors detect changes in luminosity taking inspiration from mammalian retina and providing a stream of events with high temporal resolution, also known as Dynamic Vision Sensors (DVS). This continuous stream of events can be used to extract spatio-temporal patterns from a scene. A time-surface represents a spatio-temporal context for a given spatial radius around an incoming event from a sensor at a specific time history. Time-surfaces can be organized in a hierarchical way to extract features from input events using the Hierarchy Of Time-Surfaces algorithm, hereinafter HOTS. HOTS can be organized in consecutive layers to extract combination of features in a similar way as some deep-learning algorithms do. This work introduces a novel FPGA architecture for accelerating HOTS network. This architecture is mainly based on block-RAM memory and the non-restoring square root algorithm, requiring basic components and enabling it for low-power low-latency embedded applications. The presented architecture has been tested on a Zynq 7100 platform at 100 MHz. The results show that the latencies are in the range of 1 µ s to 6.7 µ s, requiring a maximum dynamic power consumption of 77 mW. This system was tested with a gesture recognition dataset, obtaining an accuracy loss for 16-bit precision of only 1.2% with respect to the original software HOTS.

2.
Front Neurosci ; 14: 275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32327968

RESUMO

In this paper, we introduce a framework for dynamic gesture recognition with background suppression operating on the output of a moving event-based camera. The system is developed to operate in real-time using only the computational capabilities of a mobile phone. It introduces a new development around the concept of time-surfaces. It also presents a novel event-based methodology to dynamically remove backgrounds that uses the high temporal resolution properties of event-based cameras. To our knowledge, this is the first Android event-based framework for vision-based recognition of dynamic gestures running on a smartphone without off-board processing. We assess the performances by considering several scenarios in both indoors and outdoors, for static and dynamic conditions, in uncontrolled lighting conditions. We also introduce a new event-based dataset for gesture recognition with static and dynamic backgrounds (made publicly available). The set of gestures has been selected following a clinical trial to allow human-machine interaction for the visually impaired and older adults. We finally report comparisons with prior work that addressed event-based gesture recognition reporting comparable results, without the use of advanced classification techniques nor power greedy hardware.

3.
Front Neurosci ; 10: 594, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101001

RESUMO

This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating "spiking" events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA