Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108285

RESUMO

The biotechnological approaches of transgenesis and the more recent eco-friendly new breeding techniques (NBTs), in particular, genome editing, offer useful strategies for genetic improvement of crops, and therefore, recently, they have been receiving increasingly more attention. The number of traits improved through transgenesis and genome editing technologies is growing, ranging from resistance to herbicides and insects to traits capable of coping with human population growth and climate change, such as nutritional quality or resistance to climatic stress and diseases. Research on both technologies has reached an advanced stage of development and, for many biotech crops, phenotypic evaluations in the open field are already underway. In addition, many approvals regarding main crops have been granted. Over time, there has been an increase in the areas cultivated with crops that have been improved through both approaches, but their use in various countries has been limited by legislative restrictions according to the different regulations applied which affect their cultivation, marketing, and use in human and animal nutrition. In the absence of specific legislation, there is an on-going public debate with favorable and unfavorable positions. This review offers an updated and in-depth discussion on these issues.


Assuntos
Edição de Genes , Melhoramento Vegetal , Animais , Humanos , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Melhoramento Vegetal/métodos , Produtos Agrícolas/genética , Técnicas de Transferência de Genes , Marketing
2.
Front Plant Sci ; 14: 1290643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235202

RESUMO

Rusts of the genus Puccinia are wheat pathogens. Stem (black; Sr), leaf (brown; Lr), and stripe (yellow; Yr) rust, caused by Puccinia graminis f. sp. tritici (Pgt), Puccinia triticina (Pt), and Puccinia striiformis f. sp. tritici (Pst), can occur singularly or in mixed infections and pose a threat to wheat production globally in terms of the wide dispersal of their urediniospores. The development of durable resistant cultivars is the most sustainable method for controlling them. Many resistance genes have been identified, characterized, genetically mapped, and cloned; several quantitative trait loci (QTLs) for resistance have also been described. However, few studies have considered resistance to all three rust pathogens in a given germplasm. A genome-wide association study (GWAS) was carried out to identify loci associated with resistance to the three rusts in a collection of 230 inbred lines of tetraploid wheat (128 of which were Triticum turgidum ssp. durum) genotyped with SNPs. The wheat panel was phenotyped in the field and subjected to growth chamber experiments across different countries (USA, Mexico, Morocco, Italy, and Spain); then, a mixed linear model (MLM) GWAS was performed. In total, 9, 34, and 5 QTLs were identified in the A and B genomes for resistance to Pgt, Pt, and Pst, respectively, at both the seedling and adult plant stages. Only one QTL on chromosome 4A was found to be effective against all three rusts at the seedling stage. Six QTLs conferring resistance to two rust species at the adult plant stage were mapped: three on chromosome 1B and one each on 5B, 7A, and 7B. Fifteen QTLs conferring seedling resistance to two rusts were mapped: five on chromosome 2B, three on 7B, two each on 5B and 6A, and one each on 1B, 2A, and 7A. Most of the QTLs identified were specific for a single rust species or race of a species. Candidate genes were identified within the confidence intervals of a QTL conferring resistance against at least two rust species by using the annotations of the durum (cv. 'Svevo') and wild emmer wheat ('Zavitan') reference genomes. The 22 identified loci conferring resistance to two or three rust species may be useful for breeding new and potentially durable resistant wheat cultivars.

3.
Genes (Basel) ; 13(10)2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36292678

RESUMO

Stem rinfectionust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is one of the most devastating fungal diseases of durum and common wheat worldwide. The identification of sources of resistance and the validation of QTLs identified through genome-wide association studies is of paramount importance for reducing the losses caused by this disease to wheat grain yield and quality. Four segregating populations whose parents showed contrasting reactions to some Pgt races were assessed in the present study, and 14 QTLs were identified on chromosomes 3A, 4A, 6A, and 6B, with some regions in common between different segregating populations. Several QTLs were mapped to chromosomal regions coincident with previously mapped stem rust resistance loci; however, their reaction to different Pgt races suggest that novel genes or alleles could be present on chromosomes 3A and 6B. Putative candidate genes with a disease-related functional annotation have been identified in the QTL regions based on information available from the reference genome of durum cv. 'Svevo'.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Cromossomos de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
4.
Plant Physiol Biochem ; 172: 48-55, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030365

RESUMO

Specialized plant metabolites (SPMs), traditionally referred to as 'secondary metabolites', are chemical compounds involved in a broad range of biological functions, including plant responses to abiotic and biotic stresses. Moreover, some of them have a role in end-product quality with potential health benefits in humans. For this reason, they became an important target of studies focusing on their mechanisms of action and use in crop breeding and management. In this review we summarize the specific role of SPMs in physiological processes and in plant resistance to abiotic and biotic stresses, and the different strategies to enhance their production/accumulation in plant tissues under stress, including genetic approaches (marker-assisted selection and biotechnological tools) and agronomic management (fertilizer applications, cultivation method and beneficial microorganisms). New crop management strategies based on the direct application of the most promising compounds in form of plant residuals or liquid formulations are also described.


Assuntos
Melhoramento Vegetal , Estresse Fisiológico , Fertilizantes , Plantas
5.
Plants (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206299

RESUMO

The renewed focus on cereal landraces is a response to some negative consequences of modern agriculture and conventional breeding which led to a reduction of genetic diversity. Cereal landraces are still cultivated on marginal lands due to their adaptability to unfavourable conditions, constituting an important source of genetic diversity usable in modern plant breeding to improve the adaptation to abiotic or biotic stresses, yield performance and quality traits in limiting environments. Traditional agricultural production systems have played an important role in the evolution and conservation of wide variability in gene pools within species. Today, on-farm and ex situ conservation in gene bank collections, together with data sharing among researchers and breeders, will greatly benefit cereal improvement. Many efforts are usually made to collect, organize and phenotypically and genotypically analyse cereal landrace collections, which also utilize genomic approaches. Their use in breeding programs based on genomic selection, and the discovery of beneficial untapped QTL/genes/alleles which could be introgressed into modern varieties by MAS, pyramiding or biotechnological tools, increase the potential for their better deployment and exploitation in breeding for a more sustainable agricultural production, particularly enhancing adaptation and productivity in stress-prone environments to cope with current climate changes.

6.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063853

RESUMO

Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/genética , Agricultura/métodos , Animais , Genes de Plantas/genética , Genômica/métodos , Interações Hospedeiro-Patógeno/genética , Humanos , Melhoramento Vegetal/métodos
7.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918886

RESUMO

Defatted seed meals of oleaginous Brassicaceae, such as Eruca sativa, and potato peel are excellent plant matrices to recover potentially useful biomolecules from industrial processes in a circular strategy perspective aiming at crop protection. These biomolecules, mainly glycoalkaloids and phenols for potato and glucosinolates for Brassicaceae, have been proven to be effective against microbes, fungi, nematodes, insects, and even parasitic plants. Their role in plant protection is overviewed, together with the molecular basis of their synthesis in plant, and the description of their mechanisms of action. Possible genetic and biotechnological strategies are presented to increase their content in plants. Genetic mapping and identification of closely linked molecular markers are useful to identify the loci/genes responsible for their accumulation and transfer them to elite cultivars in breeding programs. Biotechnological approaches can be used to modify their allelic sequence and enhance the accumulation of the bioactive compounds. How the global challenges, such as reducing agri-food waste and increasing sustainability and food safety, could be addressed through bioprotector applications are discussed here.


Assuntos
Brassicaceae/química , Proteção de Cultivos , Compostos Fitoquímicos/isolamento & purificação , Solanum tuberosum/química , Desenvolvimento Sustentável , Resíduos/análise
8.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936286

RESUMO

By selecting for prostrate growth habit of the juvenile phase of the cycle, durum wheat cultivars could be developed with improved competitive ability against weeds, and better soil coverage to reduce the soil water lost by evaporation. A panel of 184 durum wheat (Triticum turgidum subsp. durum) genotypes, previously genotyped with DArT-seq markers, was used to perform association mapping analysis of prostrate/erect growth habit trait and to identify candidate genes. Phenotypic data of plant growth habit were recorded during three consecutive growing seasons (2014-2016), two different growth conditions (field trial and greenhouse) and two sowing periods (autumn and spring). Genome-wide association study revealed significant marker-trait associations, twelve of which were specific for a single environment/year, 4 consistent in two environments, and two MTAs for the LSmeans were identified across all environments, on chromosomes 2B and 5A. The co-localization of some MTAs identified in this study with known vernalization and photoperiod genes demonstrated that the sensitivity to vernalization and photoperiod response are actually not only key components of spring/winter growth habit, but they play also an important role in defining the magnitude of the tiller angle during the tillering stage. Many zinc-finger transcription factors, such as C2H2 or CCCH-domain zinc finger proteins, known to be involved in plant growth habit and in leaf angle regulation were found as among the most likely candidate genes. The highest numbers of candidate genes putatively related to the trait were found on chromosomes 3A, 4B, 5A and 6A. Moreover, a bioinformatic approach has been considered to search for functional ortholog genes in wheat by using the sequence of rice and barley tiller angle-related genes. The information generated could be used to improve the understanding of the mechanisms that regulate the prostrate/erect growth habit in wheat and the adaptive potential of durum wheat under resource-limited environmental conditions.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Triticum/crescimento & desenvolvimento
9.
Front Plant Sci ; 11: 569905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33408724

RESUMO

Representative, broad and diverse collections are a primary resource to dissect genetic diversity and meet pre-breeding and breeding goals through the identification of beneficial alleles for target traits. From 2,500 tetraploid wheat accessions obtained through an international collaborative effort, a Global Durum wheat Panel (GDP) of 1,011 genotypes was assembled that captured 94-97% of the original diversity. The GDP consists of a wide representation of Triticum turgidum ssp. durum modern germplasm and landraces, along with a selection of emmer and primitive tetraploid wheats to maximize diversity. GDP accessions were genotyped using the wheat iSelect 90K SNP array. Among modern durum accessions, breeding programs from Italy, France and Central Asia provided the highest level of genetic diversity, with only a moderate decrease in genetic diversity observed across nearly 50 years of breeding (1970-2018). Further, the breeding programs from Europe had the largest sets of unique alleles. LD was lower in the landraces (0.4 Mbp) than in modern germplasm (1.8 Mbp) at r 2 = 0.5. ADMIXTURE analysis of modern germplasm defined a minimum of 13 distinct genetic clusters (k), which could be traced to the breeding program of origin. Chromosome regions putatively subjected to strong selection pressure were identified from fixation index (F st ) and diversity reduction index (DRI) metrics in pairwise comparisons among decades of release and breeding programs. Clusters of putative selection sweeps (PSW) were identified as co-localized with major loci controlling phenology (Ppd and Vrn), plant height (Rht) and quality (gliadins and glutenins), underlining the role of the corresponding genes as driving elements in modern breeding. Public seed availability and deep genetic characterization of the GDP make this collection a unique and ideal resource to identify and map useful genetic diversity at loci of interest to any breeding program.

10.
Nat Genet ; 51(5): 885-895, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962619

RESUMO

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.


Assuntos
Triticum/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Cromossomos de Plantas/genética , Domesticação , Variação Genética , Genoma de Planta , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Sintenia , Tetraploidia , Triticum/classificação , Triticum/metabolismo
11.
Int J Mol Sci ; 19(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563213

RESUMO

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is a major biotic constraint to wheat production worldwide. Disease resistant cultivars are a sustainable means for the efficient control of this disease. To identify quantitative trait loci (QTLs) conferring resistance to stem rust at the seedling stage, an association mapping panel consisting of 230 tetraploid wheat accessions were evaluated for reaction to five Pgt races under greenhouse conditions. A high level of phenotypic variation was observed in the panel in response to all of the races, allowing for genome-wide association mapping of resistance QTLs in wild, landrace, and cultivated tetraploid wheats. Twenty-two resistance QTLs were identified, which were characterized by at least two marker-trait associations. Most of the identified resistance loci were coincident with previously identified rust resistance genes/QTLs; however, six regions detected on chromosomes 1B, 5A, 5B, 6B, and 7B may be novel. Availability of the reference genome sequence of wild emmer wheat accession Zavitan facilitated the search for candidate resistance genes in the regions where QTLs were identified, and many of them were annotated as NOD (nucleotide binding oligomerization domain)-like receptor (NLR) genes or genes related to broad spectrum resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença , Locos de Características Quantitativas , Triticum/genética , Basidiomycota/patogenicidade , Cromossomos de Plantas/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Tetraploidia , Triticum/microbiologia
12.
Sci Rep ; 8(1): 10612, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006562

RESUMO

In this work we investigated the variability and the genetic basis of susceptibility to arbuscular mycorrhizal (AM) colonization of wheat roots. The mycorrhizal status of wild, domesticated and cultivated tetraploid wheat accessions, inoculated with the AM species Funneliformis mosseae, was evaluated. In addition, to detect genetic markers in linkage with chromosome regions involved in AM root colonization, a genome wide association analysis was carried out on 108 durum wheat varieties and two AM fungal species (F. mosseae and Rhizoglomus irregulare). Our findings showed that a century of breeding on durum wheat and the introgression of Reduced height (Rht) genes associated with increased grain yields did not select against AM symbiosis in durum wheat. Seven putative Quantitative Trait Loci (QTLs) linked with durum wheat mycorrhizal susceptibility in both experiments, located on chromosomes 1A, 2B, 5A, 6A, 7A and 7B, were detected. The individual QTL effects (r2) ranged from 7 to 16%, suggesting a genetic basis for this trait. Marker functional analysis identified predicted proteins with potential roles in host-parasite interactions, degradation of cellular proteins, homeostasis regulation, plant growth and disease/defence. The results of this work emphasize the potential for further enhancement of root colonization exploiting the genetic variability present in wheat.


Assuntos
Glomeromycota/isolamento & purificação , Interações entre Hospedeiro e Microrganismos/genética , Micorrizas/isolamento & purificação , Simbiose/genética , Triticum/microbiologia , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Locos de Características Quantitativas , Nódulos Radiculares de Plantas/microbiologia , Triticum/genética
13.
Int J Mol Sci ; 19(6)2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867062

RESUMO

NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Proteínas NLR/genética , Imunidade Vegetal , Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/genética
14.
Int J Genomics ; 2017: 6876393, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28845431

RESUMO

A segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. "Simeto" and the T. dicoccum accession "Molise Colli" was grown in soil and evaluated for a number of shoot and root morphological traits. A total of 17 quantitative trait loci (QTL) were identified for shoot dry weight, number of culms, and plant height and for root dry weight, volume, length, surface area, and number of forks and tips, on chromosomes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B. LODs were 2.1 to 21.6, with percent of explained phenotypic variability between 0.07 and 52. Three QTL were mapped to chromosome 4B, one of which corresponds to the Rht-B1 locus and has a large impact on both shoot and root traits (LOD 21.6). Other QTL that have specific effects on root morphological traits were also identified. Moreover, meta-QTL analysis was performed to compare the QTL identified in the "Simeto" × "Molise Colli" segregating population with those described in previous studies in wheat, with three novel QTL defined. Due to the complexity of phenotyping for root traits, further studies will be helpful to validate these regions as targets for breeding programs for optimization of root function for field performance.

15.
Front Plant Sci ; 6: 1033, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26697025

RESUMO

Stem rust, caused by Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn. (Pgt), is one of the most destructive diseases of wheat. Races of the pathogen in the "Ug99 lineage" are of international concern due to their virulence for widely used stem rust resistance genes and their spread throughout Africa. Disease resistant cultivars provide one of the best means for controlling stem rust. To identify quantitative trait loci (QTL) conferring resistance to African stem rust race TTKSK at the seedling stage, we evaluated an association mapping (AM) panel consisting of 230 tetraploid wheat accessions under greenhouse conditions. A high level of phenotypic variation was observed in response to race TTKSK in the AM panel, allowing for genome-wide association mapping of resistance QTL in wild, landrace, and cultivated tetraploid wheats. Thirty-five resistance QTL were identified on all chromosomes, and seventeen are of particular interest as identified by multiple associations. Many of the identified resistance loci were coincident with previously identified rust resistance genes; however, nine on chromosomes 1AL, 2AL, 4AL, 5BL, and 7BS may be novel. To validate AM results, a biparental population of 146 recombinant inbred lines was also considered, which derived from a cross between the resistant cultivar "Cirillo" and susceptible "Neodur." The stem rust resistance of Cirillo was conferred by a single gene on the distal region of chromosome arm 6AL in an interval map coincident with the resistance gene Sr13, and confirmed one of the resistance loci identified by AM. A search for candidate resistance genes was carried out in the regions where QTL were identified, and many of them corresponded to NBS-LRR genes and protein kinases with LRR domains. The results obtained in the present study are of great interest as a high level of genetic variability for resistance to race TTKSK was described in a germplasm panel comprising most of the tetraploid wheat sub-species.

16.
Mol Genet Genomics ; 290(3): 785-806, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25416422

RESUMO

Traits related to root architecture are of great importance for yield performance of crop species, although they remain poorly understood. The present study is aimed at identifying the genomic regions involved in the control of root morphological traits in durum wheat (Triticum durum Desf.). A set of 123 recombinant inbred lines derived from the durum wheat cross of cvs. 'Creso' × 'Pedroso' were grown hydroponically to two growth stages, and were phenotypically evaluated for a number of root traits. In addition, meta-(M)QTL analysis was performed that considered the results of other root traits studies in wheat, to compare with the 'Creso' × 'Pedroso' cross and to increase the QTL detection power. Eight quantitative trait loci (QTL) for traits related to root morphology were identified on chromosomes 1A, 1B, 2A, 3A, 6A and 6B in the 'Creso' × 'Pedroso' segregating population. Twenty-two MQTL that comprised from two to six individual QTL that had widely varying confidence intervals were found on 14 chromosomes. The data from the present study provide a detailed analysis of the genetic basis of morphological root traits in wheat. This study of the 'Creso' × 'Pedroso' durum-wheat population has revealed some QTL that had not been previously identified.


Assuntos
Mapeamento Cromossômico , Raízes de Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Hidroponia , Endogamia , Fenótipo , Raízes de Plantas/anatomia & histologia , Triticum/anatomia & histologia
17.
PLoS One ; 9(4): e95211, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759998

RESUMO

Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.


Assuntos
Desequilíbrio de Ligação/genética , Tetraploidia , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Triticum
18.
BMC Genomics ; 14: 821, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24267539

RESUMO

BACKGROUND: Durum wheat often faces water scarcity and high temperatures, two events that usually occur simultaneously in the fields. Here we report on the stress responsive strategy of two durum wheat cultivars, characterized by different water use efficiency, subjected to drought, heat and a combination of both stresses. RESULTS: The cv Ofanto (lower water use efficiency) activated a large set of well-known drought-related genes after drought treatment, while Cappelli (higher water use efficiency) showed the constitutive expression of several genes induced by drought in Ofanto and a modulation of a limited number of genes in response to stress. At molecular level the two cvs differed for the activation of molecular messengers, genes involved in the regulation of chromatin condensation, nuclear speckles and stomatal closure. Noteworthy, the heat response in Cappelli involved also the up-regulation of genes belonging to fatty acid ß-oxidation pathway, glyoxylate cycle and senescence, suggesting an early activation of senescence in this cv. A gene of unknown function having the greatest expression difference between the two cultivars was selected and used for expression QTL analysis, the corresponding QTL was mapped on chromosome 6B. CONCLUSION: Ofanto and Cappelli are characterized by two opposite stress-responsive strategies. In Ofanto the combination of drought and heat stress led to an increased number of modulated genes, exceeding the simple cumulative effects of the two single stresses, whereas in Cappelli the same treatment triggered a number of differentially expressed genes lower than those altered in response to heat stress alone. This work provides clear evidences that the genetic system based on Cappelli and Ofanto represents an ideal tool for the genetic dissection of the molecular response to drought and other abiotic stresses.


Assuntos
Adaptação Biológica , Secas , Temperatura Alta , Estresse Fisiológico/genética , Triticum/fisiologia , Água , Envelhecimento/genética , Análise por Conglomerados , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Glioxilatos/metabolismo , Redes e Vias Metabólicas , Oxirredução , Folhas de Planta , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estabilidade de RNA , Transdução de Sinais
19.
BMC Genomics ; 14: 562, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23957646

RESUMO

BACKGROUND: Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat. The objective of this study was to identify the wheat genomic regions that are involved in the control of powdery mildew resistance through a quantitative trait loci (QTL) meta-analysis approach. This meta-analysis allows the use of collected QTL data from different published studies to obtain consensus QTL across different genetic backgrounds, thus providing a better definition of the regions responsible for the trait, and the possibility to obtain molecular markers that will be suitable for marker-assisted selection. RESULTS: Five QTL for resistance to powdery mildew were identified under field conditions in the durum-wheat segregating population Creso × Pedroso. An integrated map was developed for the projection of resistance genes/ alleles and the QTL from the present study and the literature, and to investigate their distribution in the wheat genome. Molecular markers that correspond to candidate genes for plant responses to pathogens were also projected onto the map, particularly considering NBS-LRR and receptor-like protein kinases. More than 80 independent QTL and 51 resistance genes from 62 different mapping populations were projected onto the consensus map using the Biomercator statistical software. Twenty-four MQTL that comprised 2-6 initial QTL that had widely varying confidence intervals were found on 15 chromosomes. The co-location of the resistance QTL and genes was investigated. Moreover, from analysis of the sequences of DArT markers, 28 DArT clones mapped on wheat chromosomes have been shown to be associated with the NBS-LRR genes and positioned in the same regions as the MQTL for powdery mildew resistance. CONCLUSIONS: The results from the present study provide a detailed analysis of the genetic basis of resistance to powdery mildew in wheat. The study of the Creso × Pedroso durum-wheat population has revealed some QTL that had not been previously identified. Furthermore, the analysis of the co-localization of resistance loci and functional markers provides a large list of candidate genes and opens up a new perspective for the fine mapping and isolation of resistance genes, and for the marker-assisted improvement of resistance in wheat.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Ascomicetos , Mapeamento Cromossômico , Genes de Plantas , Triticum/microbiologia
20.
PLoS One ; 8(6): e67280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23826256

RESUMO

Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2), both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs) are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg) and brittle rachis (Br) characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.


Assuntos
Variação Genética , Tetraploidia , Triticum/genética , Teorema de Bayes , Mapeamento Cromossômico , Análise por Conglomerados , Domesticação , Loci Gênicos , Marcadores Genéticos , Técnicas de Genotipagem , Linhagem , Fenótipo , Folhas de Planta/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA