Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(23): 10041-10051, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788731

RESUMO

Ordering takeout is a growing social phenomenon and may raise public health concerns. However, the associated health risk of compounds leaching from plastic packaging is unknown due to the lack of chemical and toxicity data. In this study, 20 chemical candidates were tentatively identified in the environmentally relevant leachate from plastic containers through the nontargeted chemical analysis. Three main components with high responses and/or predicted toxicity were further verified and quantified, namely, 3,5-di-tert-butyl-4-hydroxycinnamic acid (BHC), 2,4-di-tert-butylphenol (2,4-DTBP), and 9-octadecenamide (oleamide). The toxicity to zebrafish larvae of BHC, a degradation product of a widely used antioxidant Irganox 1010, was quite similar to that of the whole plastic leachate. In the same manner, RNA-seq-based ingenuity analysis showed that the affected canonical pathways of zebrafish larvae were quite comparable between BHC and the whole plastic leachate, i.e., highly relevant to neurological disease, metabolic disease, and even behavioral disorder. Longer-term exposure (35 days) did not cause any effect on adult zebrafish but led to decreased hatching rate and obvious neurotoxicity in zebrafish offspring. Collectively, this study strongly suggests that plastic containers can leach out a suite of compounds causing non-negligible impacts on the early stages of fish via direct or parental exposure.


Assuntos
Plásticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos
2.
J Hazard Mater ; 465: 133229, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38232544

RESUMO

Halogenated BPA (XBPA) forms resulting from water chlorination can lead to increased toxicity and different biological effects. While previous studies have reported the occurrence of different XBPAs, analytical limitation have hindered the analysis and differentiation of the many potential isomeric forms. Using online solid-phase extraction - liquid chromatography - ion-mobility - high-resolution mass spectrometry (OSPE-LC-IM-HRMS), we demonstrated a rapid analysis method for the analysis of XBPA forms after water chlorination, with a total analysis time of less than 10 min including extraction and concentration and low detection limits (∼5-80 ng/L range). A multi in-vitro bioassay testing approach for the identified products revealed that cytotoxicity and bioenergetics impacts were largely associated with the presence of halogen atoms at positions 2 or 2' and the overall number of halogens incorporated into the BPA molecule. Different XBPA also showed distinct impacts on oxidative stress, peroxisome proliferator-activated receptor gamma - PPARγ, and inflammatory response. While increased DNA damage was observed for chlorinated water samples (4.14 ± 1.21-fold change), the additive effect of the selected 20 XBPA studied could not explain the increased DNA damage observed, indicating that additional species or synergistic effects might be at play.


Assuntos
Compostos Benzidrílicos , Desinfetantes , Água Potável , Fenóis , Poluentes Químicos da Água , Purificação da Água , Halogenação , Desinfecção/métodos , Água Potável/análise , Halogênios , Purificação da Água/métodos , Espectrometria de Massas , Poluentes Químicos da Água/análise , Desinfetantes/análise
3.
Water Res ; 244: 120406, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542765

RESUMO

With the COVID-19 pandemic the use of WBE to track diseases spread has rapidly evolved into a widely applied strategy worldwide. However, many of the current studies lack the necessary systematic approach and supporting quality of epidemiological data to fully evaluate the effectiveness and usefulness of such methods. Use of WBE in a very low disease prevalence setting and for long-term monitoring has yet to be validated and it is critical for its intended use as an early warning system. In this study we seek to evaluate the sensitivity of WBE approaches under low prevalence of disease and ability to provide early warning. Two monitoring scenarios were used: (i) city wide monitoring (population 5,700,000) and (ii) community/localized monitoring (population 24,000 to 240,000). Prediction of active cases by WBE using multiple linear regression shows that a multiplexed qPCR approach with three gene targets has a significant advantage over single-gene monitoring approaches, with R2 = 0.832 (RMSE 0.053) for an analysis using N, ORF1ab and S genes (R2 = 0.677 to 0.793 for single gene strategies). A predicted disease prevalence of 0.001% (1 in 100,000) for a city-wide monitoring was estimated by the multiplexed RT-qPCR approach and was corroborated by epidemiological data evidence in three 'waves'. Localized monitoring setting shows an estimated detectable disease prevalence of ∼0.002% (1 in 56,000) and is supported by the geospatial distribution of active cases and local population dynamics data. Data analysis also shows that this approach has a limitation in sensitivity, or hit rate, of 62.5 % and an associated high miss rate (false negative rate) of 37.5 % when compared to available epidemiological data. Nevertheless, our study shows that, with enough sampling resolution, WBE at a community level can achieve high precision and accuracies for case detection (96 % and 95 %, respectively) with low false omission rate (4.5 %) even at low disease prevalence levels.


Assuntos
COVID-19 , Vigilância Epidemiológica Baseada em Águas Residuárias , Humanos , COVID-19/epidemiologia , Pandemias , Singapura/epidemiologia , Modelos Lineares , RNA Viral
4.
J Allergy Clin Immunol ; 152(3): 610-621, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271318

RESUMO

BACKGROUND: Growing up on traditional European or US Amish dairy farms in close contact with cows and hay protects children against asthma, and airway administration of extracts from dust collected from cowsheds of those farms prevents allergic asthma in mice. OBJECTIVES: This study sought to begin identifying farm-derived asthma-protective agents. METHODS: Our work unfolded along 2 unbiased and independent but complementary discovery paths. Dust extracts (DEs) from protective and nonprotective farms (European and Amish cowsheds vs European sheep sheds) were analyzed by comparative nuclear magnetic resonance profiling and differential proteomics. Bioactivity-guided size fractionation focused on protective Amish cowshed DEs. Multiple in vitro and in vivo functional assays were used in both paths. Some of the proteins thus identified were characterized by in-solution and in-gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzymatic digestion/peptide mapping followed by liquid chromatography/mass spectrometry. The cargo carried by these proteins was analyzed by untargeted liquid chromatography-high-resolution mass spectrometry. RESULTS: Twelve carrier proteins of animal and plant origin, including the bovine lipocalins Bos d 2 and odorant binding protein, were enriched in DEs from protective European cowsheds. A potent asthma-protective fraction of Amish cowshed DEs (≈0.5% of the total carbon content of unfractionated extracts) contained 7 animal and plant proteins, including Bos d 2 and odorant binding protein loaded with fatty acid metabolites from plants, bacteria, and fungi. CONCLUSIONS: Animals and plants from traditional farms produce proteins that transport hydrophobic microbial and plant metabolites. When delivered to mucosal surfaces, these agents might regulate airway responses.


Assuntos
Asma , Poeira , Feminino , Animais , Bovinos , Camundongos , Ovinos , Fazendas , Poeira/análise , Asma/prevenção & controle , Alérgenos , Sistema Respiratório
5.
Environ Int ; 175: 107942, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37094511

RESUMO

Bisphenol analogs (BPs) are widely used as industrial alternatives for Bisphenol A (BPA). Their toxicity assessment in humans has mainly focused on estrogenic activity, while other toxicity effects and mechanisms resulting from BPs exposure remain unclear. In this study, we investigated the effects of three BPs (Bisphenol AF (BPAF), Bisphenol G (BPG) and Bisphenol PH (BPPH)) on metabolic pathways of HepG2 cells. Results from comprehensive cellular bioenergetics analysis and nontarget metabolomics indicated that the most important process affected by BPs exposure was energy metabolism, as evidenced by reduced mitochondrial function and enhanced glycolysis. Compared to the control group, BPG and BPPH exhibited a consistent pattern of metabolic dysregulation, while BPAF differed from both, such as an increased ATP: ADP ratio (1.29-fold, p < 0.05) observed in BPAF and significantly decreased ATP: ADP ratio for BPG (0.28-fold, p < 0.001) and BPPH (0.45-fold, p < 0.001). Bioassay endpoint analysis revealed BPG/BPPH induced alterations in mitochondrial membrane potential and overproductions of reactive oxygen species. Taken together these data suggested that BPG/BPPH induced oxidative stress and mitochondrial damage in cells results in energy metabolism dysregulation. By contrast, BPAF had no effect on mitochondrial health, but induced a proliferation promoting effect on cells, which might contribute to the energy metabolism dysfunction. Interestingly, BPPH induced the greatest mitochondrial damage among the three BPs but did not exhibit Estrogen receptor alpha (ERα) activating effects. This study characterized the distinct metabolic mechanisms underlying energy metabolism dysregulation induced by different BPs in target human cells, providing new insight into the evaluation of the emerging BPA substitutes.


Assuntos
Compostos Benzidrílicos , Metabolismo Energético , Humanos , Trifosfato de Adenosina , Compostos Benzidrílicos/toxicidade , Metabolismo Energético/efeitos dos fármacos , Células Hep G2
6.
Water Res ; 231: 119646, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709566

RESUMO

UV/chlorine process is a promising advanced treatment to eliminate pathogen and remove refractory micropollutants for reclamation of municipal secondary effluent. However, effluent organic matter (EfOM) featuring high organic nitrogen content serves as a potential precursor for nitrogenous disinfection byproducts (N-DBPs) of health concern. The molecular-level alteration of a hydrophobic (HPO) EfOM fraction and a transphilic (TPI) EfOM fraction isolated from the same municipal effluent and the formation of N-DBPs in the UV/chlorine were tracked by ultrahigh-resolution mass spectrometry. Compared with chlorination, UV/chlorine induced a significantly greater modification on the molecular composition of EfOM and resulted in formation of unique formulae and chlorinated molecules with higher degree of oxidation, lower aromaticity, and less carbon number due to the involvement of reactive radical species. For both EfOM fractions, UV/chlorine formed more diverse DBPs with higher intensity and Cl-incorporation than chlorination. The TPI fraction of EfOM characterized by higher O/C and N/C ratios generated more N-DBPs with higher intensity clustered in the high O/C region than the HPO fraction of EfOM by both UV/chlorine and chlorination. Totally, 207 and 117 nitrogen-containing chlorinated formulae were recorded after UV/chlorine treatment of TPI and HPO, respectively. Precursor tracking found a greater number of DBPs were originated from raw EfOM through electrophilic substitution pathway rather than chlorine addition. Toxicity bioassays demonstrated that DBPs can trigger oxidative stress-induced DNA damage, while HPO fraction of EfOM dominated the induction of cytotoxicity. However, no correlation could be established between the diversity/abundance of N-DBPs and the level of DNA damage. A total of 22 DBPs with a significant rank correlation with DNA damage were identified, while C8H6O5NCl was found as the N-DBP with the strongest correlation. The potential toxic chlorine-containing formula with the most abundant intensity was assigned to C5HO3Cl3. This study suggests that the character and transformation of EfOM and associated toxicity is critical to evaluate the UV/chlorine process toward practical application.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro/química , Halogenação , Purificação da Água/métodos , Poluentes Químicos da Água/química , Halogênios , Desinfecção , Espectrometria de Massas , Desinfetantes/análise
7.
Environ Int ; 167: 107403, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35863240

RESUMO

Exposure to organic contaminants in house dust is linked to the development or exacerbation of many allergic and immune disorders. In this work, we evaluate the effects of organic contaminants on different cell bioenergetics endpoints using five different cell lines (16HBE14o-, NuLi-1, A549, THP-1 and HepG2), and examine its effects on lung epithelial cells using conventional 2D and 3D (air-liquid interface/ALI) models. Proposed rapid bioenergetic assays relies on a quick, 40 min, exposure protocol that provides equivalent dose-response curves for ATP production, spare respiratory capacity, and cell respiration. Although cell-line differences play an important role in assay performance, established EC50 concentrations for immortalized lung epithelial cells ranged from 0.11 to 0.15 mg/mL (∼2 µg of dust in a 96-well microplate format). Bioenergetic response of distinct cell types (i.e., monocytes and hepatocytes) was significantly different from epithelial cells; with HepG2 showing metabolic activity that might adversely affect results in 24 h exposure experiments. Like in cell bioenergetics, cell barrier function assay in ALI showed a dose dependent response. Although this is a physiologically relevant model, measurements are not as sensitivity as cytokine profiling and reactive oxygen species (ROS) assays. Observed effects are not solely explained by exposure to individual contaminants, this suggests that many causal agents responsible for adverse effects are still unknown. While 16HBE14o- cells show batter barrier formation characteristics, NuLi-1 cells are more sensitivity to oxidative stress induction even at low house dust extract concentrations, (NuLi-1 2.11-fold-change vs. 16HBE14o- 1.36-fold change) at 0.06 µg/mL. Results show that immortalized cell lines can be a suitable alternative to primary cells or other testing models, especially in the development of high-throughput assays. Observed cell line specific responses with different biomarker also highlights the importance of careful in-vitro model selection and potential drawbacks in risk assessment studies.


Assuntos
Poeira , Estresse Oxidativo , Linhagem Celular , Metabolismo Energético , Humanos , Inflamação
8.
J Hazard Mater ; 436: 129114, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739694

RESUMO

1,3-diphenylguanidine (DPG) is a commonly used rubber and polymer additive, that has been found to be one of the main leachate products of tire wear particles and from HDPE pipes. Its introduction to aquatic environments and potentially water supplies lead to further questions regarding the effects of disinfection by-products potentially formed. Using different bioassay approaches and NGS RNA-sequencing, we show that some of the chlorinated by-products of DPG exert significant toxicity. DPG and its chlorinated by-products also can alter cell bioenergetic processes, affecting cellular basal respiration rates and ATP production, moreover, DPG and its two chlorination products, 1,3-bis-(4-chlorophenyl)guanidine (CC04) and 1-(4-chlorophenyl)-3-(2,4-dichlorophenyl)guanidine (CC11), have an impact on mitochondrial proton leak, which is an indicator of mitochondria damage. Evidence of genotoxic effects in the form of DNA double strand breaks (DSBs) was suggested by RNA-sequencing results and further validated by an increased expression of genes associated with DNA damage response (DDR), specifically the canonical non-homologous end joining (c-NHEJ) pathway, as determined by qPCR analysis of different pathway specific genes (XRCC6, PRKDC, LIG4 and XRCC4). Immunofluorescence analysis of phosphorylated histone H2AX, another DSB biomarker, also confirmed the potential genotoxic effects observed for the chlorinated products. In addition, chlorination of DPG leads to the formation of different chlorinated products (CC04, CC05 and CC15), with analysed compounds representing up to 42% of formed products, monochloramine is not able to effectively react with DPG. These findings indicate that DPG reaction with free chlorine doses commonly applied during drinking water treatment or in water distribution networks (0.2-0.5 mg/L) can lead to the formation of toxic and genotoxic chlorinated products.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloro/toxicidade , Dano ao DNA , Desinfetantes/toxicidade , Desinfecção/métodos , Guanidinas/toxicidade , Halogenação , RNA , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
9.
Chemosphere ; 297: 134088, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35216976

RESUMO

Bisphenol analogues (BPs) are widely used in plastics, food packaging and other commercial products as non safer alternative of BPA. As emerging environmental contaminants, BPs have received considerable attention for their adverse effects on human health. However, their effects on liver metabolisms are only marginally understood. In this study, high-resolution mass spectrometry-based global metabolomics and extracellular flux (XF) analysis were applied to characterize the cellular metabolome alterations and reveal the possible mechanisms of the metabolic disorders associated with BPs-induced toxicity in HepG2 cells. BPE, BPB and BPAP with similar chemical structures were selected to compare their interference with different metabolic pathways. A total of 61 key metabolite profiles were significantly altered after exposure to the three BPs. Overall, BPs altered metabolites which are associated with energy metabolism, oxidative stress, cell proliferation and nucleotides synthesis. The primary dysregulated pathways included energy and nucleotides synthesis related Purine and Glycolysis/Gluconeogenesis metabolism. In addition, attenuated mitochondrial function and enhanced glycolysis were found under BPB and BPAP treatment. While attenuated glycolysis was observed under BPE treatment. These findings may provide potential biomarkers indicating the cytotoxicity of BPs and prompt a deeper understanding of the intramolecular metabolic processes induced by BPs exposure.


Assuntos
Compostos Benzidrílicos , Neoplasias Hepáticas , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/toxicidade , Células Hep G2 , Humanos , Metaboloma , Metabolômica , Nucleotídeos
10.
Anal Bioanal Chem ; 414(9): 2795-2807, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35132477

RESUMO

The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in various environments has led to increasing concern, and these chemicals have been confirmed as global contaminants. Following the chemical regulatory restrictions imposed, PFAS alternatives that are presumed to be less toxic have been manufactured to replace the traditional ones in the market. However, owing to the original release and alternative usage, continuous accumulation of PFAS has been reported in environmental and human samples, with uncertain consequences for ecosystem and human health. It is crucial to promote and improve existing analytical techniques to facilitate the detection of trace amounts of PFAS in diverse environmental matrices. This review summarizes analytical methods that have been applied to and advanced for targeted detection and suspect screening of PFAS, which mainly include (i) sampling and sample preparation methods for various environment matrices and organisms, and quality assurance/quality control during the analysis process, and (ii) quantitative methods for targeted analysis and automated suspect screening strategies for non-targeted PFAS analysis, together with their applications, advantages, shortcomings, and need for new method development.


Assuntos
Fluorocarbonos , Ecossistema , Fluorocarbonos/análise , Humanos , Espectrometria de Massas , Manejo de Espécimes
11.
Water Res ; 204: 117634, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543976

RESUMO

The UV/chlorine process as a potential tertiary municipal wastewater treatment alternative for removing refractory PPCPs has been widely investigated. However, the role of effluent organic matter (EfOM) on the radical chemistry and toxicity alteration is unclear. The elimination of two model PPCPs, primidone (PRM) and caffeine (CAF), by the co-exposure of UV and free chlorine was investigated to elucidate the impact of EfOM. Experimental results indicated that both •OH and reactive chlorine species (RCS) were importantly involved in the decay of PRM at acidic condition, while ClO• played dominant role at alkaline pH. The decay of CAF was dominated by ClO• under all conditions. Chlorine dose, initial contaminant concentration, solution pH, and water matrix affect the process efficiency at varying degree resulting from their specific effect on the radical speciation in the system. Presence of EfOM isolate remarkably inhibited the decay of PRM and CAF by preferentially scavenging RCS and particularly ClO•. Good correlations (linear for PRM and exponential for CAF) between UV absorbance at 254 nm and the observed pseudo first-order rate constants (k'obs) for all EfOM solutions were obtained, demonstrating the importance of aromatic moieties in inhibiting the degradation of targeted contaminants by UV/chlorine process. Degradation of PRM/CAF in reconstituted effluent spiked with the major effluent constituents (i.e., EfOM isolates, Cl-, HCO3-, and NO3-) was comparable to the results obtained with the real WWTP effluent and fit well to the correlation between k'obs and UV absorbance at 254 nm, suggesting that EfOM isolates can be used to determine the efficiency of UV/chlorine process in real effluent. EfOM serves as the main precursor of adsorbable organic chlorine in the UV/chlorine treatment. Bioassays indicated that chlorine-containing compounds could induce oxidative stress, mitochondrial dysfunction, and increase the cell DNA damage. Among evaluated treatment conditions, the nature of EfOM, hydrophobic versus transphilic fraction, is likely the predominant factor affecting the cytotoxicity. Meanwhile the UV/chlorine treatment can significantly reduce the cytotoxicity of EfOM isolates. However, adding high level of selected contaminants (e.g., PRM and CAF) can inhibit this phenomenon due to the competition with reactive radicals.


Assuntos
Bioensaio , Cloro , Cafeína , Dano ao DNA , Estresse Oxidativo
12.
Environ Int ; 132: 105038, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31421387

RESUMO

DEET (N, N-diethyl-m-toluamide) is one of the most frequently detected trace organic contaminants (TOrC) in wastewaters and is used primarily as an insect repellent. It was introduced for use in the general public in 1957. It is ubiquitously present in the environment and DEET concentrations are usually among the highest reported for TOrCs. Due to recent concerns about possible analytical interferences in detection methods being reported, this study focused on possible artifacts caused by seasonal, spatial, and diurnal variations in wastewater influent concentration of DEET. We also compared usage data to observed wastewater concentrations of seven wastewater treatment plants (WWTPs) in four different regions in the US monitored from November 2014 to November 2016. Consumption data obtained reveal patterns of consumption according to climatic regions and season. During the summer DEET usage accounts for almost 60% of all usage during a year, while during the winter months DEET usage accounts for <5%. Concerning spatial distribution, while per capita consumption of DEET in Florida is three times higher than the one observed in Arizona (44 g vs 14 g), DEET concentrations in wastewater tend to be much higher in Arizona. Regardless of WWTPs or monitoring period, concentrations as high as 15,200 ng/L were observed during the month of October 2016. While DEET has a diurnal variation in the wastewater influent, with a maximum at 18:00, the diurnal variability is not enough to explain the great discrepancies between consumption of DEET versus occurrence in wastewaters. Although LC-MS/MS analysis of isobaric and structural mimics suggests some possibility of interferences, NMR spectroscopy analysis of environmental samples does not support the presence of such mimics in real samples.


Assuntos
DEET/análise , Repelentes de Insetos/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Monitoramento Ambiental , Estações do Ano , Espectrometria de Massas em Tandem , Fatores de Tempo , Estados Unidos
13.
N Engl J Med ; 375(5): 411-421, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27518660

RESUMO

BACKGROUND: The Amish and Hutterites are U.S. agricultural populations whose lifestyles are remarkably similar in many respects but whose farming practices, in particular, are distinct; the former follow traditional farming practices whereas the latter use industrialized farming practices. The populations also show striking disparities in the prevalence of asthma, and little is known about the immune responses underlying these disparities. METHODS: We studied environmental exposures, genetic ancestry, and immune profiles among 60 Amish and Hutterite children, measuring levels of allergens and endotoxins and assessing the microbiome composition of indoor dust samples. Whole blood was collected to measure serum IgE levels, cytokine responses, and gene expression, and peripheral-blood leukocytes were phenotyped with flow cytometry. The effects of dust extracts obtained from Amish and Hutterite homes on immune and airway responses were assessed in a murine model of experimental allergic asthma. RESULTS: Despite the similar genetic ancestries and lifestyles of Amish and Hutterite children, the prevalence of asthma and allergic sensitization was 4 and 6 times as low in the Amish, whereas median endotoxin levels in Amish house dust was 6.8 times as high. Differences in microbial composition were also observed in dust samples from Amish and Hutterite homes. Profound differences in the proportions, phenotypes, and functions of innate immune cells were also found between the two groups of children. In a mouse model of experimental allergic asthma, the intranasal instillation of dust extracts from Amish but not Hutterite homes significantly inhibited airway hyperreactivity and eosinophilia. These protective effects were abrogated in mice that were deficient in MyD88 and Trif, molecules that are critical in innate immune signaling. CONCLUSIONS: The results of our studies in humans and mice indicate that the Amish environment provides protection against asthma by engaging and shaping the innate immune response. (Funded by the National Institutes of Health and others.).


Assuntos
Agricultura , Asma/imunologia , Exposição Ambiental , Imunidade Inata , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Adolescente , Animais , Asma/epidemiologia , Criança , Cristianismo , Estudos Transversais , Citocinas/sangue , Modelos Animais de Doenças , Poeira/imunologia , Feminino , Expressão Gênica , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Imunoglobulina E/sangue , Contagem de Leucócitos , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Animais , Fator 88 de Diferenciação Mieloide/deficiência , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA