Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(1): 144-153, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36441601

RESUMO

Neuronal diseases and trauma are among the current major health-care problems. Patients frequently develop an irreversible state of neuronal disfunction that lacks treatment, strongly reducing life quality and expectancy. Novel strategies are thus necessary and tissue engineering research is struggling to provide alternatives to current treatments, making use of biomaterials capable to provide cell supports and active stimuli to develop permissive environments for neural regeneration. As neuronal cells are naturally found in electrical microenvironments, the electrically active materials can pave the way for new and effective neuroregenerative therapies. In this work the influence of piezoelectric poly(vinylidene fluoride) with different surface charges and dynamic mechanoelectrical stimuli on neuron-like cells adhesion, proliferation and differentiation was addressed. It is successfully demonstrated that both surface charge and electrically active dynamic microenvironments can be suitable to improve neuron-like cells adhesion, proliferation, and differentiation. These findings provide new knowledge to develop effective approaches for preclinical applications.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Adesão Celular , Diferenciação Celular , Proliferação de Células
2.
J Colloid Interface Sci ; 596: 158-172, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839349

RESUMO

In order to improve battery performance by tuning battery separator membranes, this work reports on porous poly(vinylidene fluoride-co-trifluoroethylene) - P(VDF-TrFE)- membranes with surface pillar microstructures. Separators with tailored pillar diameter, height and bulk thickness were fabricated by template patterning and computer simulations, allowing to evaluate the effect of the pillar microstructure characteristics on battery performance. It is shown that the different pillar microstructures of the separators affect the uptake value (150-325%), ionic conductivity value (0.8-1.6 mS·cm-1) and discharge capacity of the lithium ion batteries (LIB) when compared with the separator without pillars. The experimental charge-discharge behavior demonstrates that the pillar parameters affect battery performance and the best microstructure leading to 80 mAh·g-1 at 2C. Battery performance can be thus optimized by adjusting pillar diameter, height and bulk thickness of the separators keeping its volume constant, as demonstrated also by the simulation results. The parameter with most influence in battery performance is the bulk thickness of the separator, allowing to obtain a maximum discharge capacity value of 117.8 mAh·g-1 at 90C for a thickness of 0.01 mm. Thus, this work shows that the optimization of the pillar microstructure of the separator membranes allows increasing the capacity towards a new generation of high-performance LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA