Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Clin Invest ; 54(6): e14195, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38519718

RESUMO

BACKGROUND: Oestrogen deficiency increases bone resorption, contributing to osteoporosis development. Yet, the mechanisms mediating the effects of oestrogen on osteoclasts remain unclear. This study aimed to elucidate the early metabolic alteration induced by RANKL, the essential cytokine in osteoclastogenesis and 17-beta-oestradiol (E2) on osteoclast progenitor cells, using RAW 264.7 macrophage cell line and primary bone marrow-derived macrophages as biological models. RESULTS: This research demonstrated that, in osteoclast precursors, RANKL stimulates complex I activity, oxidative phosphorylation (OXPHOS) and mitochondria-derived ATP production as early as 3 h of exposure. This effect on mitochondrial bioenergetics is associated with an increased capacity to oxidize TCA cycle substrates, fatty acids and amino acids. E2 inhibited all effects of RANKL on mitochondria metabolism. In the presence of RANKL, E2 also decreased cell number and stimulated the mitochondrial-mediated apoptotic pathway, detected as early as 3 h. Further, the pro-apoptotic effects of E2 during osteoclast differentiation were associated with an accumulation of p392S-p53 in mitochondria. CONCLUSIONS: These findings elucidate the early effects of RANKL on osteoclast progenitor metabolism and suggest novel p53-mediated mechanisms that contribute to postmenopausal osteoporosis.


Assuntos
Diferenciação Celular , Estradiol , Mitocôndrias , Osteoclastos , Proteína Supressora de Tumor p53 , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Estradiol/farmacologia , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Ligante RANK/metabolismo , Células RAW 264.7 , Proteína Supressora de Tumor p53/metabolismo
2.
Nat Commun ; 14(1): 3616, 2023 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330524

RESUMO

NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.


Assuntos
Metabolismo Energético , NAD , Humanos , Camundongos , Animais , NAD/metabolismo , Oxirredução , Homeostase , Camundongos Knockout , Citocinas/metabolismo
3.
Front Endocrinol (Lausanne) ; 14: 1110369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152948

RESUMO

Introduction: Estrogens inhibit bone resorption and preserve bone mass, at least in part, via direct effects on osteoclasts. The binding of RANKL, the critical cytokine for osteoclast differentiation, to its receptor in osteoclast precursor cells of the monocyte lineage recruits the adaptor protein TRAF6 and activates multiple signaling pathways. Early effects of RANKL include stimulation of mitochondria. 17ß-estradiol (E2) prevents the effects of RANKL on mitochondria and promotes mitochondria mediated apoptotic cell death. However, the molecular mechanisms responsible for the actions of RANKL and estrogens on mitochondria remain unknown. Evolutionarily Conserved Signaling Intermediate in Toll Pathway (ECSIT) is a complex I-associated protein that regulates immune responses in macrophages following the engagement of Toll-like receptors, which also recruit TRAF6. Here, we examined whether ECSIT could be implicated in the rapid effects of RANKL and E2 on osteoclast progenitors. Methods: Bone marrow-derived macrophages (BMMs) from C57BL/6 mice were cultured with RANKL (30 ng/ml) with or without E2 (10-8 M). ECSIT-TRAF6 interaction was evaluated by co-immunoprecipitation and ECSIT levels in mitochondria and cytosolic fractions by Western blot. ShRNA lentivirus particles were used to knockdown ECSIT. Osteoclasts were enumerated after tartrate-resistant acid phosphatase staining. Oxygen consumption and extracellular acidification rates were measured with Seahorse XFe96 Analyzer. ATP, lactate, and NAD/NADH were measured with commercial assay kits. NADH oxidation to NAD was used to evaluate Complex I activity. Total and mitochondrial ROS, and mitochondrial membrane potential were measured with H2DCFDA, MitoSOX, and TMRM probes, respectively. Degradation of DEVD-AFC was used to measure Caspase-3 activity. Results: We found that RANKL promoted ECSIT-TRAF6 interaction and increased the levels of ECSIT in mitochondria. E2 abrogated these effects of RANKL. Silencing of ECSIT decreased osteoclast differentiation and abrogated the inhibitory effects of E2 on osteoclastogenesis. Loss of ECSIT decreased complex I activity, oxygen consumption, NAD+/NADH redox ratio, and ATP production and increased mitochondrial ROS. In the absence of ECSIT, the stimulatory actions of RANKL on complex I activity and all other markers of oxidative phosphorylation, as well as their inhibition by E2, were prevented. Instead, RANKL stimulated apoptosis of osteoclast progenitors. Discussion: These findings suggest that dysregulated mitochondria cause a switch in RANKL signaling from pro-survival to pro-apoptotic. In addition, our results indicate that ECSIT represents a central node for the early effects of RANKL on mitochondria and that inhibition of ECSIT-mediated mitochondria stimulation might contribute to the bone protective actions of estrogens.


Assuntos
NAD , Osteogênese , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/fisiologia , Estrogênios/farmacologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , NAD/metabolismo , Osteoclastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
4.
Bone Rep ; 19: 101664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38163012

RESUMO

Hydrogen peroxide (H2O2), superoxide anion radical (O2-•), and other forms of reactive oxygen species (ROS) are produced by the vast majority of mammalian cells and can contribute both to cellular homeostasis and dysfunction. The NADPH oxidases (NOX) enzymes and the mitochondria electron transport chain (ETC) produce most of the cellular ROS. Multiple antioxidant systems prevent the accumulation of excessive amounts of ROS which cause damage to all cellular macromolecules. Many studies have examined the contribution of ROS to different bone cell types and to skeletal physiology and pathophysiology. Here, we discuss the role of H2O2 and O2-• and their major enzymatic sources in osteoclasts and osteoblasts, the fundamentally different ways via which these cell types utilize mitochondrial derived H2O2 for differentiation and function, and the molecular mechanisms that impact and are altered by ROS in these cells. Particular emphasis is placed on evidence obtained from mouse models describing the contribution of different sources of ROS or antioxidant enzymes to bone resorption and formation. Findings from studies using pharmacological or genetically modified mouse models indicate that an increase in H2O2 and perhaps other ROS contribute to the loss of bone mass with aging and estrogen deficiency, the two most important causes of osteoporosis and increased fracture risk in humans.

5.
Sci Rep ; 10(1): 11933, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686739

RESUMO

Loss of estrogens at menopause is a major cause of osteoporosis and increased fracture risk. Estrogens protect against bone loss by decreasing osteoclast number through direct actions on cells of the myeloid lineage. Here, we investigated the molecular mechanism of this effect. We report that 17ß-estradiol (E2) decreased osteoclast number by promoting the apoptosis of early osteoclast progenitors, but not mature osteoclasts. This effect was abrogated in cells lacking Bak/Bax-two pro-apoptotic members of the Bcl-2 family of proteins required for mitochondrial apoptotic death. FasL has been previously implicated in the pro-apoptotic actions of E2. However, we show herein that FasL-deficient mice lose bone mass following ovariectomy indistinguishably from FasL-intact controls, indicating that FasL is not a major contributor to the anti-osteoclastogenic actions of estrogens. Instead, using microarray analysis we have elucidated that ERα-mediated estrogen signaling in osteoclast progenitors decreases "oxidative phosphorylation" and the expression of mitochondria complex I genes. Additionally, E2 decreased the activity of complex I and oxygen consumption rate. Similar to E2, the complex I inhibitor Rotenone decreased osteoclastogenesis by promoting osteoclast progenitor apoptosis via Bak/Bax. These findings demonstrate that estrogens decrease osteoclast number by attenuating respiration, and thereby, promoting mitochondrial apoptotic death of early osteoclast progenitors.


Assuntos
Trifosfato de Adenosina/biossíntese , Estrogênios/metabolismo , Mitocôndrias/metabolismo , Células Precursoras de Monócitos e Macrófagos/metabolismo , Osteoclastos/metabolismo , Fosforilação Oxidativa , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Contagem de Células , Diferenciação Celular , Células Cultivadas , Estrogênios/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Células Precursoras de Monócitos e Macrófagos/citologia , Células Precursoras de Monócitos e Macrófagos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transdução de Sinais
6.
J Mol Endocrinol ; 61(2): M27-M39, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29588426

RESUMO

Resveratrol (RSV) is a polyphenolic compound with antioxidant, anti-inflammatory and anti-aging properties partly associated with sirtuin 1 (SIRT1)-activation in the skin. However, poor water solubility may limit RSV efficacy. This work aimed to clarify the interest of a new synthetic water-soluble RSV derivative (resveratrol glucoside sulfate, RSV-GS) for topical application. Resveratrol glucoside sulfate was synthesized using microwave-assisted sulfation. Cytotoxicity assays were performed with the keratinocyte HaCaT cell line, using MTT reduction, neutral red uptake, Alamar Blue/resazurin reduction, trypan blue exclusion and measurement of ATP concentration. Western blotting was used to evaluate SIRT1 protein content. Regarding SIRT1 binding, an in silico docking study was performed, using AutoDock Vina. Our results showed that the synthetic derivative RSV-GS was 1000 times more soluble in water than RSV and its non-sulfated glucoside. No relevant decrease in HaCaT cell viability was observed for concentrations up to 5 mM for RSV-GS, and up to 500 µM for resveratrol glucoside, while a significant decrease in HaCaT viability occurred from 100 µM for RSV. RSV-GS and RSV showed a similar behavior regarding protective effect against oxidative stress-induced cytotoxicity. SIRT1 protein content increased after treatment with 500 µM of RSV-GS and 100 µM of RSV. Moreover, in silico studies predicted that RSV-GS binds more stably to SIRT1 with a lower binding free energy than RSV. Although these results support the possible use of RSV-GS in topical formulations, in vivo safety and efficacy studies are needed before considering the use of RSV-GS in commercial products.


Assuntos
Resveratrol/farmacologia , Sulfatos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Micro-Ondas , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/química , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA