Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2405468121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861601

RESUMO

Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.


Assuntos
Cálcio , Conexinas , Proteínas do Tecido Nervoso , Humanos , Conexinas/metabolismo , Conexinas/genética , Células HeLa , Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Apoptose , Morte Celular , Sinalização do Cálcio
2.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892021

RESUMO

Thyroxine (T4) is a drug extensively utilized for the treatment of hypothyroidism. However, the oral absorption of T4 presents certain limitations. This research investigates the efficacy of CO2 nanobubbles in water as a potential oral carrier for T4 administration to C57BL/6 hypothyroid mice. Following 18 h of fasting, the formulation was administered to the mice, demonstrating that the combination of CO2 nanobubbles and T4 enhanced the drug's absorption in blood serum by approximately 40%. To comprehend this observation at a molecular level, we explored the interaction mechanism through which T4 engages with the CO2 nanobubbles, employing molecular simulations, semi-empirical quantum mechanics, and PMF calculations. Our simulations revealed a high affinity of T4 for the water-gas interface, driven by additive interactions between the hydrophobic region of T4 and the gas phase and electrostatic interactions of the polar groups of T4 with water at the water-gas interface. Concurrently, we observed that at the water-gas interface, the cluster of T4 formed in the water region disassembles, contributing to the drug's bioavailability. Furthermore, we examined how the gas within the nanobubbles aids in facilitating the drug's translocation through cell membranes. This research contributes to a deeper understanding of the role of CO2 nanobubbles in drug absorption and subsequent release into the bloodstream. The findings suggest that utilizing CO2 nanobubbles could enhance T4 bioavailability and cell permeability, leading to more efficient transport into cells. Additional research opens the possibility of employing lower concentrations of this class of drugs, thereby potentially reducing the associated side effects due to poor absorption.


Assuntos
Dióxido de Carbono , Modelos Animais de Doenças , Hipotireoidismo , Tiroxina , Água , Animais , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/metabolismo , Camundongos , Dióxido de Carbono/química , Água/química , Camundongos Endogâmicos C57BL , Administração Oral , Nanopartículas/química , Portadores de Fármacos/química
3.
Drug Discov Today ; 28(11): 103797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806386

RESUMO

Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Antibacterianos/farmacologia
4.
Proc Natl Acad Sci U S A ; 119(18): e2202104119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486697

RESUMO

The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell­cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell­cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell­cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell­cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell­cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell­cell channels in different cell types might require special attention.


Assuntos
Conexinas , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Humanos , Canais Iônicos , Mamíferos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
5.
J Cell Physiol ; 237(2): 1547-1560, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34779505

RESUMO

Large-pore channels, including those formed by connexin, pannexin, innexin proteins, are part of a broad family of plasma membrane channels found in vertebrates and invertebrates, which share topology features. Despite their relevance in parasitic diseases such as Chagas and malaria, it was unknown whether these large-pore channels are present in unicellular organisms. We identified 14 putative proteins in Trypanosomatidae parasites as presumptive homologs of innexin proteins. All proteins possess the canonical motif of the innexin family, a pentapeptide YYQWV, and 10 of them share a classical membrane topology of large-pore channels. A sequence similarity network analysis confirmed their closeness to innexin proteins. A bioinformatic model showed that a homolog of Trypanosoma cruzi (T. cruzi) could presumptively form a stable octamer channel with a highly positive electrostatic potential in the internal cavities and extracellular entrance due to the notable predominance of residues such as Arg or Lys. In vitro dye uptake assays showed that divalent cations-free solution increases YO-PRO-1 uptake and hyperosmotic stress increases DAPI uptake in epimastigotes of T. cruzi. Those effects were sensitive to probenecid. Furthermore, probenecid reduced the proliferation and transformation of T. cruzi. Moreover, probenecid or carbenoxolone increased the parasite sensitivity to antiparasitic drugs commonly used in therapy against Chagas. Our study suggests the existence of innexin homologs in unicellular organisms, which could be protein subunits of new large-pore channels in unicellular organisms.


Assuntos
Parasitos , Trypanosoma cruzi , Trypanosomatina , Animais , Conexinas/metabolismo , Parasitos/metabolismo , Probenecid/farmacologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Trypanosomatina/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34301850

RESUMO

Pannexin1 (Panx1) channels are ubiquitously expressed in vertebrate cells and are widely accepted as adenosine triphosphate (ATP)-releasing membrane channels. Activation of Panx1 has been associated with phosphorylation in a specific tyrosine residue or cleavage of its C-terminal domains. In the present work, we identified a residue (S394) as a putative phosphorylation site by Ca2+/calmodulin-dependent kinase II (CaMKII). In HeLa cells transfected with rat Panx1 (rPanx1), membrane stretch (MS)-induced activation-measured by changes in DAPI uptake rate-was drastically reduced by either knockdown of Piezo1 or pharmacological inhibition of calmodulin or CaMKII. By site-directed mutagenesis we generated rPanx1S394A-EGFP (enhanced green fluorescent protein), which lost its sensitivity to MS, and rPanx1S394D-EGFP, mimicking phosphorylation, which shows high DAPI uptake rate without MS stimulation or cleavage of the C terminus. Using whole-cell patch-clamp and outside-out excised patch configurations, we found that rPanx1-EGFP and rPanx1S394D-EGFP channels showed current at all voltages between ±100 mV, similar single channel currents with outward rectification, and unitary conductance (∼30 to 70 pS). However, using cell-attached configuration we found that rPanx1S394D-EGFP channels show increased spontaneous unitary events independent of MS stimulation. In silico studies revealed that phosphorylation of S394 caused conformational changes in the selectivity filter and increased the average volume of lateral tunnels, allowing ATP to be released via these conduits and DAPI uptake directly from the channel mouth to the cytoplasmic space. These results could explain one possible mechanism for activation of rPanx1 upon increase in cytoplasmic Ca2+ signal elicited by diverse physiological conditions in which the C-terminal domain is not cleaved.


Assuntos
Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Conexinas/genética , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Indóis/farmacocinética , Canais Iônicos/genética , Canais Iônicos/metabolismo , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Fosforilação , Serina/genética , Serina/metabolismo
7.
Drug Deliv ; 28(1): 1020-1030, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34060399

RESUMO

NOD1 is an intracellular receptor that, when activated, induces gene expression of pro-inflammatory factors promoting macrophages and neutrophils recruitment at the infection site. However, iE-DAP, the dipeptide agonist that promotes this receptor's activation, cannot permeate cell membranes. To develop a nanocarrier capable of achieving a high and prolonged activation over time, iE-DAP was encapsulated in nanoparticles (NPs) made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The physicochemical properties, colloidal stability, encapsulation efficiency, and cellular uptake of iE-DAP-loaded PHVB NPs were analyzed. Results evidenced that physicochemical properties of iE-DAP-loaded NPs remained stable over time, and NPs were efficiently internalized into cells, a process that depends on time and concentration. Moreover, our results showed that NPs elicited a controlled cargo release in vitro, and the encapsulated agonist response was higher than its free form, suggesting the possibility of activating intracellular receptors triggering an immune response through the release of NOD1 agonist.


Assuntos
Ácido Diaminopimélico/análogos & derivados , Nanopartículas/química , Proteína Adaptadora de Sinalização NOD1/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Ácido Diaminopimélico/administração & dosagem , Ácido Diaminopimélico/farmacologia , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Camundongos , Poliésteres/química , Células RAW 264.7
8.
bioRxiv ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33106803

RESUMO

SARS-CoV-2 ORF3a is believed to form ion channels, which may be involved in the modulation of virus release, and has been implicated in various cellular processes like the up-regulation of fibrinogen expression in lung epithelial cells, downregulation of type 1 interferon receptor, caspase-dependent apoptosis, and increasing IFNAR1 ubiquitination. ORF3a assemblies as homotetramers, which are stabilized by residue C133. A recent cryoEM structure of a homodimeric complex of ORF3a has been released. A lower-resolution cryoEM map of the tetramer suggests two dimers form it, arranged side by side. The dimer's cryoEM structure revealed that each protomer contains three transmembrane helices arranged in a clockwise configuration forming a six helices transmembrane domain. This domain's potential permeation pathway has six constrictions narrowing to about 1 Å in radius, suggesting the structure solved is in a closed or inactivated state. At the cytosol end, the permeation pathway encounters a large and polar cavity formed by multiple beta strands from both protomers, which opens to the cytosolic milieu. We modeled the tetramer following the arrangement suggested by the low-resolution tetramer cryoEM map. Molecular dynamics simulations of the tetramer embedded in a membrane and solvated with 0.5 M of KCl were performed. Our simulations show the cytosolic cavity is quickly populated by both K+ and Cl-, yet with different dynamics. K+ ions moved relatively free inside the cavity without forming proper coordination sites. In contrast, Cl- ions enter the cavity, and three of them can become stably coordinated near the intracellular entrance of the potential permeation pathway by an inter-subunit network of positively charged amino acids. Consequently, the central cavity's electrostatic potential changed from being entirely positive at the beginning of the simulation to more electronegative at the end.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30932351

RESUMO

Most of the computational tools involved in drug discovery developed during the 1980s were largely based on computational chemistry, quantitative structure-activity relationship (QSAR) and cheminformatics. Subsequently, the advent of genomics in the 2000s gave rise to a huge number of databases and computational tools developed to analyze large quantities of data, through bioinformatics, to obtain valuable information about the genomic regulation of different organisms. Target identification and validation is a long process during which evidence for and against a target is accumulated in the pursuit of developing new drugs. Finally, the drug delivery system appears as a novel approach to improve drug targeting and releasing into the cells, leading to new opportunities to improve drug efficiency and avoid potential secondary effects. In each area: target discovery, drug discovery and drug delivery, different computational strategies are being developed to accelerate the process of selection and discovery of new tools to be applied to different scientific fields. Research on these three topics is growing rapidly, but still requires a global view of this landscape to detect the most challenging bottleneck and how computational tools could be integrated in each topic. This review describes the current state of the art in computational strategies for target discovery, drug discovery and drug delivery and how these fields could be integrated. Finally, we will discuss about the current needs in these fields and how the continuous development of databases and computational tools will impact on the improvement of those areas. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Assuntos
Biologia Computacional , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento do Exoma
10.
Molecules ; 23(4)2018 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-29690495

RESUMO

Amphiphilic Janus dendrimers (JDs) are repetitively branched molecules with hydrophilic and hydrophobic components that self-assemble in water to form a variety of morphologies, including vesicles analogous to liposomes with potential pharmaceutical and medical application. To date, the self-assembly of JDs has not been fully investigated thus it is important to gain insight into its mechanism and dependence on JDs' molecular structure. In this study, the aggregation behavior in water of a second-generation bis-MPA JD was evaluated using experimental and computational methods. Dispersions of JDs in water were carried out using the thin-film hydration and ethanol injection methods. Resulting assemblies were characterized by dynamic light scattering, confocal microscopy, and atomic force microscopy. Furthermore, a coarse-grained molecular dynamics (CG-MD) simulation was performed to study the mechanism of JDs aggregation. The obtaining of assemblies in water with no interdigitated bilayers was confirmed by the experimental characterization and CG-MD simulation. Assemblies with dendrimersome characteristics were obtained using the ethanol injection method. The results of this study establish a relationship between the molecular structure of the JD and the properties of its aggregates in water. Thus, our findings could be relevant for the design of novel JDs with tailored assemblies suitable for drug delivery systems.


Assuntos
Dendrímeros/química , Simulação de Dinâmica Molecular , Água/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular
11.
Bioconjug Chem ; 29(5): 1584-1594, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29570280

RESUMO

Cell-to-cell transmission is the most effective pathway for the spread of human immunodeficiency virus (HIV-1). Infected cells expose virus-encoded fusion proteins on their surface as a consequence of HIV-1 replicative cycle that interacts with noninfected cells through CD4 receptor and CXCR4 coreceptor leading to the formation of giant multinucleated cells known as syncytia. Our group previously described the potent activity of dendrimers against CCR5-tropic viruses. Nevertheless, the study of G1-S4, G2-S16, and G3-S16 dendrimers in the context of X4-HIV-1 tropic cell-cell fusion referred to syncytium formation remains still unknown. These dendrimers showed a suitable biocompatibility in all cell lines studied and our results demonstrated that anionic carbosilane dendrimers G1-S4, G2-S16, and G3-S16 significantly inhibit the X4-HIV-1 infection, as well as syncytia formation, in a dose dependent manner. We also demonstrated that G2-S16 and G1-S4 significantly reduced syncytia formation in HIV-1 Env-mediated cell-to-cell fusion model. Molecular modeling and in silico models showed that G2-S16 dendrimer interfered with gp120-CD4 complex and demonstrated its potential use for a treatment.


Assuntos
Fármacos Anti-HIV/farmacologia , Dendrímeros/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Silanos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Ânions/química , Ânions/farmacologia , Fármacos Anti-HIV/química , Antígenos CD4/metabolismo , Linhagem Celular , Dendrímeros/química , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Modelos Moleculares , Silanos/química
12.
Microb Cell Fact ; 16(1): 138, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784139

RESUMO

BACKGROUND: Antifreeze proteins (AFPs) production is a survival strategy of psychrophiles in ice. These proteins have potential in frozen food industry avoiding the damage in the structure of animal or vegetal foods. Moreover, there is not much information regarding the interaction of Antarctic bacterial AFPs with ice, and new determinations are needed to understand the behaviour of these proteins at the water/ice interface. RESULTS: Different Antarctic places were screened for antifreeze activity and microorganisms were selected for the presence of thermal hysteresis in their crude extracts. Isolates GU1.7.1, GU3.1.1, and AFP5.1 showed higher thermal hysteresis and were characterized using a polyphasic approach. Studies using cucumber and zucchini samples showed cellular protection when samples were treated with partially purified AFPs or a commercial AFP as was determined using toluidine blue O and neutral red staining. Additionally, genome analysis of these isolates revealed the presence of genes that encode for putative AFPs. Deduced amino acids sequences from GU3.1.1 (gu3A and gu3B) and AFP5.1 (afp5A) showed high similarity to reported AFPs which crystal structures are solved, allowing then generating homology models. Modelled proteins showed a triangular prism form similar to ß-helix AFPs with a linear distribution of threonine residues at one side of the prism that could correspond to the putative ice binding side. The statistically best models were used to build a protein-water system. Molecular dynamics simulations were then performed to compare the antifreezing behaviour of these AFPs at the ice/water interface. Docking and molecular dynamics simulations revealed that gu3B could have the most efficient antifreezing behavior, but gu3A could have a higher affinity for ice. CONCLUSIONS: AFPs from Antarctic microorganisms GU1.7.1, GU3.1.1 and AFP5.1 protect cellular structures of frozen food showing a potential for frozen food industry. Modeled proteins possess a ß-helix structure, and molecular docking analysis revealed the AFP gu3B could be the most efficient AFPs in order to avoid the formation of ice crystals, even when gu3A has a higher affinity for ice. By determining the interaction of AFPs at the ice/water interface, it will be possible to understand the process of adaptation of psychrophilic bacteria to Antarctic ice.


Assuntos
Proteínas Anticongelantes/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos , Regiões Antárticas , Proteínas Anticongelantes/química , Proteínas Anticongelantes/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cucurbita/metabolismo , Cucurbitaceae/metabolismo , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
13.
Nanomedicine (Lond) ; 12(13): 1607-1621, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28621615

RESUMO

AIM: To study the structural requirements that a cyclooligosaccharide-based nanoparticle must fulfill to be an efficient siRNA transfection vector. MATERIALS & METHODS: siRNA protection from degradation by RNAses, transfection efficiency and the thermodynamic parameters of the nanoparticle/siRNA interactions were studied on pairs of amphiphilic molecules using biochemical techniques and molecular dynamics. RESULTS: The lower the siRNA solvent accessible surface area in the presence of the nanoparticle, higher the protection from RNAse-mediated degradation in the corresponding nanocomplex; a moderate nanoparticle/siRNA binding energy value further facilitates reversible complexation and binding to the target cellular mRNA. CONCLUSION: The use, in advance, of these parameters will provide a useful indication of the potential of a molecular nanoparticle as siRNA transfecting vector.


Assuntos
Nanopartículas/química , Oligossacarídeos/química , RNA Interferente Pequeno/genética , Transfecção/métodos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Corantes Fluorescentes , Técnicas de Silenciamento de Genes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Ratos
14.
Curr Pharm Des ; 23(21): 3062-3075, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28266272

RESUMO

Dendrimers are monodisperse, regular, three-dimensional and small-scale macromolecules that can be used to release substances such as drugs, markers, and genetic material into the cells. Among these substances, nucleic acids such as plasmid DNA, antisense oligonucleotides (asODN), and small-interfering RNA (siRNA) are widely used as therapeutic macromolecules for the treatment and prevention of diverse diseases. Several studies were focused on the modification of dendrimers aiming to improve their affinity for nucleic acids and their ability to release nucleic acids inside the cells. However, high-generation dendrimers have been shown to provoke leaking of cell membranes due to high surface-charge density. Thereby, despite the high potential of dendrimers, cytotoxicity still represents a problem to be solved prior to future in-vitro and in-vivo applications. Many approaches have proposed the introduction of diverse functional groups in low generation dendrimers, to reduce potential surface-charge density, without a loss in the ability to interact with nucleic acids. Another issue that should be addressed is how to modulate the affinity of dendrimers for nucleic acids at different pH values to guarantee an adequate release of the cargo in endosomal vesicles. These questions may be addressed through the aid of computational chemistry and bioinformatics tools. Therefore, the present review aims to provide a detailed review focused on the several techniques that have been developed for the study and design of dendrimers as carriers for DNA or RNA. CONCLUSIONS: As shown in the present review, molecular dynamics simulations can contribute by studying at theoretical level dendrimer-nucleic acid complexes at different conditions, such as pH or ionic strength. Therefore, different cell conditions such as the stay at the cytoplasm and the transit towards endosomes can be addressed. The influence of different terminal groups of dendrimers to DNA/RNA binding can also be evaluated using molecular simulations and especially, by using free energy methods, which aim to determine affinity of dendrimers for nucleic acids. The development of a library of terminal groups for dendrimers may represent a significant contribution to the design of new dendrimers. In this regard, protein-DNA interactions of structure databases have been analyzed as a way to identify suitable residues that can be incorporated as terminal groups of dendrimers. In summary, computational chemistry and biology tools will aim the design of new dendrimers for different kinds of cargo molecules.


Assuntos
Dendrímeros/química , Ácidos Nucleicos/química , Simulação de Dinâmica Molecular
15.
Int J Nanomedicine ; 12: 1985-1999, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28331320

RESUMO

Angiotensin (1-7) (Ang-(1-7)) is a bioactive heptapeptide with a short half-life and has beneficial effects in several tissues - among them, skeletal muscle - by preventing muscle atrophy. Dendrimers are promising vehicles for the protection and transport of numerous bioactive molecules. This work explored the use of a neutral, non-cytotoxic hydroxyl-terminated poly(amidoamine) (PAMAM-OH) dendrimer as an Ang-(1-7) carrier. Bioinformatics analysis showed that the Ang-(1-7)-binding capacity of the dendrimer presented a 2:1 molar ratio. Molecular dynamics simulation analysis revealed the capacity of neutral PAMAM-OH to protect Ang-(1-7) and form stable complexes. The peptide coverage ability of the dendrimer was between ~50% and 65%. Furthermore, an electrophoretic mobility shift assay demonstrated that neutral PAMAM-OH effectively bonded peptides. Experimental results showed that the Ang-(1-7)/PAMAM-OH complex, but not Ang-(1-7) alone, had an anti-atrophic effect when administered intraperitoneally, as evaluated by muscle strength, fiber diameter, myofibrillar protein levels, and atrogin-1 and MuRF-1 expressions. The results of the Ang-(1-7)/PAMAM-OH complex being intraperitoneally injected were similar to the results obtained when Ang-(1-7) was systemically administered through mini-osmotic pumps. Together, the results suggest that Ang-(1-7) can be protected for PAMAM-OH when this complex is intraperitoneally injected. Therefore, the Ang-(1-7)/PAMAM-OH complex is an efficient delivery method for Ang-(1-7), since it improves the anti-atrophic activity of this peptide in skeletal muscle.


Assuntos
Angiotensina I/uso terapêutico , Dendrímeros/química , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/prevenção & controle , Transtornos Musculares Atróficos/tratamento farmacológico , Transtornos Musculares Atróficos/prevenção & controle , Fragmentos de Peptídeos/uso terapêutico , Angiotensina I/farmacologia , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Imobilização , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transtornos Musculares Atróficos/patologia , Cadeias Pesadas de Miosina/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeos/uso terapêutico , Proteínas Ligases SKP Culina F-Box/metabolismo , Eletricidade Estática , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
J Nanobiotechnology ; 15(1): 1, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049488

RESUMO

BACKGROUND: Nanotechnology is a science that involves imaging, measurement, modeling and a manipulation of matter at the nanometric scale. One application of this technology is drug delivery systems based on nanoparticles obtained from natural or synthetic sources. An example of these systems is synthetized from poly(3-hydroxybutyrate-co-3-hydroxyvalerate), which is a biodegradable, biocompatible and a low production cost polymer. The aim of this work was to investigate the uptake mechanism of PHBV nanoparticles in two different epithelial cell lines (HeLa and SKOV-3). RESULTS: As a first step, we characterized size, shape and surface charge of nanoparticles using dynamic light scattering and transmission electron microscopy. Intracellular incorporation was evaluated through flow cytometry and fluorescence microscopy using intracellular markers. We concluded that cellular uptake mechanism is carried out in a time, concentration and energy dependent way. Our results showed that nanoparticle uptake displays a cell-specific pattern, since we have observed different colocalization in two different cell lines. In HeLa (Cervical cancer cells) this process may occur via classical endocytosis pathway and some internalization via caveolin-dependent was also observed, whereas in SKOV-3 (Ovarian cancer cells) these patterns were not observed. Rearrangement of actin filaments showed differential nanoparticle internalization patterns for HeLa and SKOV-3. Additionally, final fate of nanoparticles was also determined, showing that in both cell lines, nanoparticles ended up in lysosomes but at different times, where they are finally degraded, thereby releasing their contents. CONCLUSIONS: Our results, provide novel insight about PHBV nanoparticles internalization suggesting that for develop a proper drug delivery system is critical understand the uptake mechanism.


Assuntos
Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Neoplasias/tratamento farmacológico , Poliésteres/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Endocitose , Células HeLa , Humanos , Nanopartículas/ultraestrutura
17.
J Mol Graph Model ; 72: 201-208, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28110184

RESUMO

Dendrimers functionalized with folic acid (FA) are drug delivery systems that can selectively target cancer cells with folate receptors (FR-α) overexpression. Incorporation of polyethylene glycol (PEG) can enhance dendrimers solubility and pharmacokinetics, but ligand-receptor binding must not be affected. In this work we characterized, at atomic level, the binding functionality of conventional site-specific dendrimers conjugated with FA with PEG 750 or PEG 3350 as a linker. After Molecular Dynamics simulation, we observed that both PEG's did not interfere over ligand-receptor binding functionality. Although binding kinetics could be notably affected, the folate fragment from both dendrimers remained exposed to the solvent before approaching selectively to FR-α. PEG 3350 provided better solubility and protection from enzymatic degradation to the dendrimer than PEG 750. Also, FA-PEG3350 dendrimer showed a slightly better interaction with FR-α than FA-PEG750 dendrimer. Therefore, theoretical evidence supports that both dendrimers are suitable as drug delivery systems for cancer therapies.


Assuntos
Dendrímeros/química , Receptor 1 de Folato/química , Receptor 1 de Folato/metabolismo , Ácido Fólico/química , Polietilenoglicóis/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Solventes/química
18.
Bioconjug Chem ; 27(12): 2844-2849, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27998072

RESUMO

Dendrimers are highly branched, star-shaped, and nanosized polymers that have been proposed as new carriers for specific HIV-1 peptides. Dendritic cells (DCs) are the most-potent antigen-presenting cells that play a major role in the development of cell-mediated immunotherapy due to the generation and regulation of adaptive immune responses against HIV-1. This article reports on the associated behavior of two or three HIV-derived peptides simultaneously (p24/gp160 or p24/gp160/NEF) with cationic carbosilane dendrimer G2-NN16. We have found that (i) immature DCs (iDCs) and mature (mDCs) did not capture efficiently HIV peptides regarding the uptake level when cells were treated with G2-NN16-peptide complex alone; (ii) the ability of DCs to migrate was not depending on the peptides presence; and (iii) with the use of molecular dynamic simulation, a mixture of peptides decreased the cell uptake of the other peptides (in particular, NEF hinders the binding of more peptides and is especially obstructing of the binding of gp160 to G2-NN16). The results suggest that G2-NN16 cannot be considered as an alternative carrier for delivering two or more HIV-derived peptides to DCs.


Assuntos
Dendrímeros/química , Células Dendríticas/efeitos dos fármacos , Antígenos HIV/química , Silanos/química , Dendrímeros/farmacocinética , Antígenos HIV/farmacologia , Proteína do Núcleo p24 do HIV/química , Proteína gp160 do Envelope de HIV/química , Humanos , Simulação de Dinâmica Molecular , Silanos/farmacocinética , Eletricidade Estática
19.
Sci Rep ; 6: 29436, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27377641

RESUMO

An ideal nucleic-acid transfection system should combine the physical and chemical characteristics of cationic lipids and linear polymers to decrease cytotoxicity and uptake limitations. Previous research described new types of carriers termed amphiphilic dendrimers (ADs), which are based on polyamidoamine dendrimers (PAMAM). These ADs display the cell membrane affinity advantage of lipids and preserve the high affinity for DNA possessed by cationic dendrimers. These lipid/dendrimer hybrids consist of a low-generation, hydrophilic dendron (G2, G1, or G0) bonded to a hydrophobic tail. The G2-18C AD was reported to be an efficient siRNA vector with significant gene silencing. However, shorter tail ADs (G2-15C and G2-13C) and lower generation (G0 and G1) dendrimers failed as transfection carriers. To date, the self-assembly phenomenon of this class of amphiphilic dendrimers has not been molecularly explored using molecular simulation methods. To gain insight into these systems, the present study used coarse-grained molecular dynamics simulations to describe how ADs are able to self-assemble into an aggregate, and, specifically, how tail length and generation play a key role in this event. Finally, explanations are given for the better efficiency of G2/18-C as gene carrier in terms of binding of siRNA. This knowledge could be relevant for the design of novel, safer ADs with well-optimized affinity for siRNA.


Assuntos
Dendrímeros/química , Lipídeos/química , RNA Interferente Pequeno/metabolismo , Dendrímeros/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Transfecção
20.
Nanoscale Res Lett ; 11(1): 66, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26847692

RESUMO

Poly(amidoamine) dendrimers are the most recognized class of dendrimer. Amino-terminated (PAMAM-NH2) and hydroxyl-terminated (PAMAM-OH) dendrimers of generation 4 are widely used, since they are commercially available. Both have different properties, mainly based on their different overall charges at physiological pH. Currently, an important function of dendrimers as carriers of short single-stranded DNA has been applied. These molecules, known as antisense oligonucleotides (asODNs), are able to inhibit the expression of a target mRNA. Whereas PAMAM-NH2 dendrimers have shown to be able to transfect plasmid DNA, PAMAM-OH dendrimers have not shown the same successful results. However, little is known about their interaction with shorter and more flexible molecules such as asODNs. Due to several initiatives, the use of these neutral dendrimers as a scaffold to introduce other functional groups has been proposed. Because of its low cytotoxicity, it is relevant to understand the molecular phenomena involving these types of dendrimers. In this work, we studied the behavior of an antisense oligonucleotide in presence of both types of dendrimers using molecular dynamics simulations, in order to elucidate if they are able to form stable complexes. In this manner, we demonstrated at atomic level that PAMAM-NH2, unlike PAMAM-OH, could form a well-compacted complex with asODN, albeit PAMAM-OH can also establish stable interactions with the oligonucleotide. The biological activity of asODN in complex with PAMAM-NH2 dendrimer was also shown. Finally, we revealed that in contact with PAMAM-OH, asODN remains outside the cells as TIRF microscopy results showed, due to its poor interaction with this dendrimer and cell membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA