Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Curr Res Neurobiol ; 4: 100082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397815

RESUMO

Type 2 diabetes mellitus has steadily increased in prevalence over the past five decades. Among the health risks associated with this disorder are cognitive decline and are increased risk of developing dementia. To further investigate the link between diabetes and cognition, here we test memory performance and hippocampal function in the Goto-Kakizaki (GK) rat, a robust model of diabetes. Relative to age-matched Wistar rats, GK rats show impairments in a conjunctive memory task that requires discriminating objects not only on the basis of their physical characteristics, but also on the basis of where and when they were last seen. Concomitant to these deficits are changes in the pattern of expression of Egr1 (an immediate-early gene critical for memory) in dentate gyrus granule cells, consistent with dentate hypoactivity leading to unstable hippocampal representations. These data support the hypothesis that diabetes confers a phenotype of accelerated senescence on the hippocampus, and help to link this disorder with changes in hippocampal circuits.

2.
PLoS One ; 17(11): e0277414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374865

RESUMO

The mammalian hippocampus (Hp) can be functionally segregated along its septotemporal axis, with involvement of dorsal hippocampus (dHp) in spatial memory and ventral hippocampus (vHp) in stress responses and emotional behaviour. In the present study, we investigate comparable functional segregation in proposed homologues within the avian brain. Using Japanese quail (Coturnix Japonica), we report that bilateral lesions of the rostral hippocampus (rHp) produce robust deficits in a spatial Y-maze discrimination (YMD) test while sparing performance during contextual fear conditioning (CFC), comparable to results from lesions to homologous regions in mammals. In contrast, caudal hippocampus (cHp) lesions failed to produce deficits in either CFC or YMD, suggesting that, unlike mammals, both cHp and rHp of birds can support emotional behavior. These observations demonstrate functional segregation along the rostrocaudal axis of the avian Hp that is comparable in part to distinctions seen along the mammalian hippocampal septotemporal axis.


Assuntos
Coturnix , Hipocampo , Animais , Coturnix/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória Espacial , Medo , Mamíferos
3.
STAR Protoc ; 3(3): 101553, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35852943

RESUMO

Here, we present a protocol for inducing selective lesions in the hippocampal formation of Japanese quail (Coturnix japonica), coupled with associated behavioral testing. We first describe the surgical procedure for aspiration lesions in Japanese quail. We then detail two well-known hippocampus-dependent behavioral tests adapted to birds-foraging array (FA) and spontaneous object recognition (SOR). This protocol is adapted from those used in mammals and can be used to study the involvement of Japanese quail memory centers in declarative memory. For complete details on the use and execution of this protocol, please refer to Damphousse et al. (2022).


Assuntos
Coturnix , Hipocampo , Animais , Mamíferos
4.
Front Psychol ; 13: 887790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664217

RESUMO

The hippocampal formation (HF) is a structure critical to navigation and many forms of memory. In mammals, the firing of place cells is widely regarded as the fundamental unit of HF information processing. Supporting homology between the avian and mammalian HF, context-specific patterns of Egr1 have been reported in birds that are comparable to those produced by place cell firing in mammals. Recent electrophysiological data, however, suggest that many avian species lack place cells, potentially undermining the correspondence between Egr1 and place cell-related firing in the avian brain. To clarify this, the current study examines Egr1 expression in Japanese quail under conditions known to elicit only weakly spatially modulated firing patterns and report robust context-dependent Egr1 expression. These data confirm that context-dependent expression of Egr1 is not dependent on precise place fields and provide insight into how these birds are able to perform complex spatial tasks despite lacking mammalian-like place cells.

5.
iScience ; 25(2): 103805, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243216

RESUMO

The mammalian temporal cortex can be functionally segregated into regions that encode spatial information and others that are predominantly responsible for object recognition. In the present study, we report comparable functional segregation in the avian brain. Using Japanese quail, we find that bilateral lesions of the hippocampus (Hp) produce robust deficits in performance in a foraging array (FA) spatial memory task, while sparing spontaneous object recognition (SOR). In contrast, lesions to the adjacent area parahippocampalis (APH) compromise both SOR and FA. These observations demonstrate a functional dissociation between Hp and APH that is comparable to the distinctions seen in mammals between the hippocampus and surrounding temporal cortex.

6.
Learn Behav ; 50(1): 167-177, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34918205

RESUMO

Spontaneous novelty preference is apparent in a wide array of animals, including mammals, birds, reptiles, and fish. This provides a powerful behavioral assay to assess whether an animal can recognize a diverse array of stimuli in a common paradigm. Surprisingly, no research has been conducted in birds using novelty approach under conditions comparable to the spontaneous object recognition (SOR) protocols that have become standard across other animals. To correct this, the current study adapts a number of SOR protocols commonly used in mammals to characterize novelty approach in Silver King pigeons and Japanese quail. We show that, in general, both quail and pigeons readily approach novel objects or locations when tested using SOR protocols, although pigeons show a neophilic response under some conditions in which quail do not. Neither quail nor pigeons readily approach objects in novel contexts or novel locations. These data show that SOR can be successfully adapted to birds, allowing for more direct comparison between mammals and birds in tasks of shared ecological relevance.


Assuntos
Columbidae , Coturnix , Animais , Columbidae/fisiologia , Mamíferos , Reconhecimento Psicológico/fisiologia , Percepção Visual
7.
Front Behav Neurosci ; 15: 734359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675787

RESUMO

Adult-born neurons in the dentate gyrus (DG) make important contributions to learning as they integrate into neuronal networks. Neurogenesis is dramatically reduced by a number of conditions associated with cognitive impairment, including type 2 diabetes mellitus (T2DM). Increasing neurogenesis may thus provide a therapeutic target for ameliorating diabetes-associated cognitive impairments, but only if new neurons remain capable of normal function. To address the capacity for adult-generated neurons to incorporate into functional circuits in the hyperglycemic DG, we measured Egr1 expression in granule cells (GCs), BrdU labeled four weeks prior, in Goto-Kakizaki (GK) rats, an established model of T2DM, and age-matched Wistars. The results indicate that while fewer GCs are generated in the DG of GK rats, GCs that survive readily express Egr1 in response to spatial information. These data demonstrate that adult-generated GCs in the hyperglycemic DG remain functionally competent and support neurogenesis as a viable therapeutic target.

8.
Behav Pharmacol ; 32(7): 531-548, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34417358

RESUMO

Contextual information is represented in the hippocampus (HPC) partially through the recruitment of distinct neuronal ensembles. It is believed that reactivation of these ensembles underlies memory retrieval processes. Recently, we showed that norepinephrine input from phasic locus coeruleus activation induces hippocampal plasticity resulting in the recruitment of new neurons and disengagement from previously established representations. We hypothesize that norepinephrine may provide a neuromodulatory mnemonic switch signaling the HPC to move from a state of retrieval to encoding in the presence of novelty, and therefore, plays a role in memory updating. Here, we tested whether bilateral dorsal dentate gyrus (dDG) infusions of the ß-adrenergic receptor (BAR) agonist isoproterenol (ISO), administered prior to encoding or retrieval, would impair spatial working and reference memory by reverting, the system to encoding (thereby recruiting new neurons) potentially interfering with the retrieval of the previously established spatial ensemble. We also investigated whether dDG infusions of ISO could promote cognitive flexibility by switching the system to encoding when it is adaptive (ie, when new information is presented, eg, reversal learning). We found that intra-dDG infusions of ISO given prior to retrieval caused deficits in working and reference memory which was blocked by pretreatment with the BAR-antagonist, propranolol (PRO). In contrast, ISO administered prior to reversal learning led to improved performance. These data support our hypothesis that norepinephrine serves as a novelty signal to update HPC contextual representations via BAR activation-facilitated recruitment of new neurons. This can be both maladaptive and adaptive depending on the situation.


Assuntos
Giro Denteado , Isoproterenol/farmacologia , Vias Neurais/metabolismo , Norepinefrina/metabolismo , Propranolol/farmacologia , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cognição/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Plasticidade Neuronal , Neurotransmissores/farmacologia , Neurotransmissores/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Memória Espacial/fisiologia
9.
Neurobiol Aging ; 95: 225-230, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32861833

RESUMO

Aging is typically accompanied by both memory decline and changes in hippocampal function. Lasting memory is thought to also require recapitulation of recent memory traces during subsequent rest-a phenomenon termed memory trace reactivation or replay. Replay becomes less synchronized in the CA1 region of aged animals, and while subtle, this deficit may have profound physiological consequences for driving plasticity. Importantly, spike timing changes during replay may impair the induction of plasticity-regulating gene products, such as activity-regulated cytoskeletal protein (Arc). To test this hypothesis, Arc transcription was assessed both during spatial exploration and subsequent memory-related replay in hippocampal CA1 of young and aged animals. A significant age-related difference was observed in the pattern of pyramidal cells expressing Arc during rest, supporting the hypothesis that altered plasticity-related cascade is a major consequence of the changes in coordinated activity that occur during consolidation in older animals.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Navegação Espacial/fisiologia , Envelhecimento/psicologia , Animais , Hipocampo/fisiologia , Masculino , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Ratos Endogâmicos F344
10.
Anim Cogn ; 22(6): 1027-1037, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31338606

RESUMO

Following presentation of a novel food odor on the breath of a conspecific, naïve rats will exhibit a preference for that food, a form of learning called social transmission of food preference (STFP). When tested in isolation, STFPs are robust, persisting for up to a month and overcoming prior aversions. This testing protocol, however, does not account for rats' ecology. Rats and other rodents forage in small groups, rather than alone. We allowed rats to forage in pairs and found that, following social foraging, they no longer displayed a food preference, i.e., that STFPs degrade during social foraging. Non-foraging rats exposed to the same foods for the same amount of time in isolation maintained their preferences. We also examined whether individual differences between rats affect STFP. Neither boldness nor sociability predicted initial STFP strength, but bolder rats' preferences degraded more following social foraging. Shyer rats were more likely to eat at the same time as their partner. By tracking rats' interactions during social foraging, we show that they use complex rules to combine their own preferences with socially acquired information about foods in their environment. These results situate STFP within the behavioral ecology of foraging and suggest that individual traits and the interactions between them modulate how social learning is maintained, modified, or lost.


Assuntos
Preferências Alimentares , Aprendizagem , Animais , Ratos , Comportamento Social
11.
J Neurosci ; 39(3): 445-455, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30478033

RESUMO

Locus coeruleus (LC) neurons, the source of hippocampal norepinephrine (NE), are activated by novelty and changes in environmental contingencies. Based on the role of monoamines in reconfiguring invertebrate networks, and data from mammalian systems, a network reset hypothesis for the effects of LC activation has been proposed. We used the cellular compartmental analysis of temporal FISH technique based on the cellular distribution of immediate early genes to examine the effect of LC activation and inactivation, on regional hippocampal maps in male rats, when LC activity was manipulated just before placement in a second familiar (A/A) and/or novel environment (A/B). We found that bilateral phasic, but not tonic, activation of LC reset hippocampal maps in the A/A condition, whereas silencing the LC with clonidine before placement in the A/B condition blocked map reset and a familiar map emerged in the dentate gyrus, proximal and distal CA1, and CA3c. However, CA3a and CA3b encoded the novel environment. These results support a role for phasic LC responses in generating novel hippocampal sequences during memory encoding and, potentially, memory updating. The silencing experiments suggest that novel environments may not be recognized as different by dentate gyrus and CA1 without LC input. The functional distinction between phasic and tonic LC activity argues that these parameters are critical for determining network changes. These data are consistent with the hippocampus activating internal network representations to encode novel experiential episodes and suggest LC input is critical for this role.SIGNIFICANCE STATEMENT Burst activation of the broadly projecting novelty signaling system of the locus coeruleus initiates new network representations throughout the hippocampus despite unchanged external environments. Tonic activation does not alter network representations in the same condition. This suggests differences in the temporal parameters of neuromodulator network activation are critical for neuromodulator function. Silencing this novelty signaling system prevented the appearance of new network representations in a novel environment. Instead, familiar representations were expressed in a subset of hippocampal areas, with another subset encoding the novel environment. This "being in two places at once" argues for independent functional regions within the hippocampus. These experiments strengthen the view that internal states are major determinants of the brain's construction of environmental representations.


Assuntos
Meio Ambiente , Locus Cerúleo/fisiologia , Orientação/fisiologia , Reconhecimento Psicológico/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Mapeamento Encefálico , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Clonidina/farmacologia , Giro Denteado/fisiologia , Genes Precoces/genética , Processamento de Imagem Assistida por Computador , Masculino , Memória/efeitos dos fármacos , Rede Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley
12.
Aging Dis ; 9(5): 798-807, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30271657

RESUMO

The perirhinal cortex (PRh) is a critical mediator of recognition memory, and a wealth of evidence points to impairment in PRh function with age. Despite this evidence, age-related deficits in recognition memory are not consistently observed. This may be partially due to the fact that older animals also have well-established deficits in hippocampal function, and many protocols that assess perirhinal function are also sensitive to hippocampal damage. When using one of these protocols, spontaneous object recognition in an open field, we are able to replicate published age-related deficits using pairs of complex objects. However, when using zero-delay object recognition, a task that is more resistant to the influence of changes in hippocampal function, we find no significant age-related differences in recognition memory in the same animals. These data highlight the importance of the protocol used for testing recognition memory, and may place constraints on the role of the PRh in age-related recognition memory impairment as it is typically tested in much of the literature.

13.
Front Behav Neurosci ; 12: 92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867393

RESUMO

Early growth response 3 (Egr3) is an immediate early gene (IEG) that is regulated downstream of a cascade of genes associated with risk for psychiatric disorders, and dysfunction of Egr3 itself has been implicated in schizophrenia, bipolar disorder, and depression. As an activity-dependent transcription factor, EGR3 is poised to regulate the neuronal expression of target genes in response to environmental events. In the current study, we sought to identify a downstream target of EGR3 with the goal of further elucidating genes in this biological pathway relevant for psychiatric illness risk. We used electroconvulsive stimulation (ECS) to induce high-level expression of IEGs in the brain, and conducted expression microarray to identify genes differentially regulated in the hippocampus of Egr3-deficient (-/-) mice compared to their wildtype (WT) littermates. Our results replicated previous work showing that ECS induces high-level expression of the brain-derived neurotrophic factor (Bdnf) in the hippocampus of WT mice. However, we found that this induction is absent in Egr3-/- mice. Quantitative real-time PCR (qRT-PCR) validated the microarray results (performed in males) and replicated the findings in two separate cohorts of female mice. Follow-up studies of activity-dependent Bdnf exons demonstrated that ECS-induced expression of both exons IV and VI requires Egr3. In situ hybridization demonstrated high-level cellular expression of Bdnf in the hippocampal dentate gyrus following ECS in WT, but not Egr3-/-, mice. Bdnf promoter analysis revealed eight putative EGR3 binding sites in the Bdnf promoter, suggesting a mechanism through which EGR3 may directly regulate Bdnf gene expression. These findings do not appear to result from a defect in the development of hippocampal neurons in Egr3-/- mice, as cell counts in tissue sections stained with anti-NeuN antibodies, a neuron-specific marker, did not differ between Egr3-/- and WT mice. In addition, Sholl analysis and counts of dendritic spines in golgi-stained hippocampal sections revealed no difference in dendritic morphology or synaptic spine density in Egr3-/-, compared to WT, mice. These findings indicate that Egr3 is required for ECS-induced expression of Bdnf in the hippocampus and suggest that Bdnf may be a downstream gene in our previously identified biologically pathway for psychiatric illness susceptibility.

14.
Brain Behav Evol ; 90(1): 73-80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28866682

RESUMO

Birds possess a hippocampus that serves many of the same spatial and mnemonic functions as the mammalian hippocampus but achieves these outcomes with a dramatically different neuroanatomical organization. The properties of spatially responsive neurons in birds and mammals are also different. Much of the contemporary interest in the role of the mammalian hippocampus in spatial representation dates to the discovery of place cells in the rat hippocampus. Since that time, cells that respond to head direction and cells that encode a grid-like representation of space have been described in the rat brain. Research with homing pigeons has discovered hippocampal cells, including location cells, path cells, and pattern cells, that share some but not all properties of spatially responsive neurons in the rodent brain. We have recently used patterns of immediate-early gene expression, visualized by the catFISH method, to investigate how neurons in the hippocampus of brood-parasitic brown-headed cowbirds respond to spatial context. We have found cells that discriminate between different spatial environments and are re-activated when the same spatial environment is re-experienced. Given the differences in habitat and behaviour between birds and rodents, it is not surprising that spatially responsive cells in their hippocampus and other brain regions differ. The enormous diversity of avian habitats and behaviour offers the potential for understanding the general principles of neuronal representation of space.


Assuntos
Aves/fisiologia , Hipocampo/fisiologia , Células de Lugar/fisiologia , Percepção Espacial/fisiologia , Animais
15.
PeerJ ; 5: e3836, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28948109

RESUMO

Neuron types (e.g., pyramidal cells) within one area of the brain are often considered homogeneous, despite variability in their biophysical properties. Here we review literature demonstrating variability in the electrical activity of CA1 hippocampal pyramidal cells (PCs), including responses to somatic current injection, synaptic stimulation, and spontaneous network-related activity. In addition, we describe how responses of CA1 PCs vary with development, experience, and aging, and some of the underlying ionic currents responsible. Finally, we suggest directions that may be the most impactful in expanding this knowledge, including the use of text and data mining to systematically study cellular heterogeneity in more depth; dynamical systems theory to understand and potentially classify neuron firing patterns; and mathematical modeling to study the interaction between cellular properties and network output. Our goals are to provide a synthesis of the literature for experimentalists studying CA1 PCs, to give theorists an idea of the rich diversity of behaviors models may need to reproduce to accurately represent these cells, and to provide suggestions for future research.

16.
Neural Plast ; 2017: 6063048, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28589041

RESUMO

The dentate gyrus (DG) engages in sustained Arc transcription for at least 8 hours following behavioral induction, and this time course may be functionally coupled to the unique role of the DG in hippocampus-dependent learning and memory. The factors that regulate long-term DG Arc expression, however, remain poorly understood. Animals lacking Egr3 show less Arc expression following convulsive stimulation, but the effect of Egr3 ablation on behaviorally induced Arc remains unknown. To address this, Egr3-/- and wild-type (WT) mice explored novel spatial environments and were sacrificed either immediately or after 5, 60, 240, or 480 minutes, and Arc expression was quantified by fluorescence in situ hybridization. Although short-term (i.e., within 60 min) Arc expression was equivalent across genotypes, DG Arc expression was selectively reduced at 240 and 480 minutes in mice lacking Egr3. These data demonstrate the involvement of Egr3 in regulating the late protein-dependent phase of Arc expression in the DG.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Giro Denteado/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Comportamento Exploratório , Feminino , Masculino , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Processamento Espacial
17.
J Neurosci ; 37(10): 2795-2801, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28174334

RESUMO

Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.SIGNIFICANCE STATEMENT One primary factor constraining memory capacity is the sparsity of the engram, the proportion of neurons that encode a single experience. Investigating sparsity in humans is hampered by the lack of single-cell resolution and differences in behavioral protocols. Sparsity can be quantified in freely moving rodents, but extrapolating these data to humans assumes that information storage is comparable across species and is robust to restraint-induced reduction in sensory input. Here, we test these assumptions and show that species differences in brain size build memory capacity without altering the structure of the data being stored. Furthermore, sparsity in most of the hippocampus is resilient to reduced sensory information. This information is vital to integrating animal data with human imaging navigation studies.


Assuntos
Evolução Biológica , Hipocampo/fisiologia , Memória Episódica , Rede Nervosa/fisiologia , Orientação/fisiologia , Animais , Medicina Baseada em Evidências , Macaca mulatta , Masculino , Especificidade da Espécie
18.
PLoS One ; 11(10): e0164333, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27716817

RESUMO

In mammals, episodic memory and spatial cognition involve context-specific recruitment of unique ensembles in the hippocampal formation (HF). Despite their capacity for sophisticated spatial (e.g., for migration) and episodic-like (e.g., for food-caching) memory, the mechanisms underlying contextual representation in birds is not well understood. Here we demonstrate environment-specific Egr1 expression as male brown-headed cowbirds (Molothrus ater) navigate environments for food reward, showing that the avian HF, like its mammalian counterpart, recruits distinct neuronal ensembles to represent different contexts.


Assuntos
Aves/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Hipocampo/metabolismo , Animais , Meio Ambiente , Masculino , Memória Episódica , Neurônios/metabolismo , Recompensa
19.
Synapse ; 70(7): 277-282, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26926290

RESUMO

The dentate gyrus (DG) is a hippocampal region that has long been characterized as a critical mediator of enduring memory formation and retrieval. As such, there is a wealth of studies investigating this area. Most of these studies have either treated the DG as a homogeneous structure, or examined differences in neurons along the septal-temporal axis. Recent data, however, have indicated that a functional distinction exists between the suprapyramidal and infrapyramidal blades of the DG, with the former showing more robust responses during spatial tasks. To date, few anatomical studies have addressed this functional gradient in rats, and no study has done so in the mouse. To address this, we investigated dendritic morphology and spine density in hippocampal granule cells of rats and mice using the Golgi-Cox technique. We find that granule cells from the suprapyramidal blade of the DG contain greater dendritic material in the region receiving spatial information from the medial perforant path. This provides a potential anatomical substrate for the asymmetric response of the DG to spatial input. Synapse 70:277-282, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Espinhas Dendríticas/ultraestrutura , Giro Denteado/citologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos F344
20.
Neurosci Lett ; 603: 66-70, 2015 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-26219984

RESUMO

The dentate gyrus (DG) plays a critical role in memory formation and maintenance. Fitting this specialized role, the DG has many unique characteristics. In addition to being one of the few places in which new neurons are continually added in adulthood, the region also shows a unique long-term sustained transcriptional response of the immediate-early gene Arc to sensory input. Although we know that adult-generated granule cells are reliably recruited into behaviorally-driven neuronal network, it remains unknown whether they display robust late-phase sustained transcription in response to activity like their developmentally-generated counterparts. Since this late-phase of transcription is required for enduring plasticity, knowing if sustained transcription appears as soon as these cells are incorporated provides information on their potential for plasticity. To address this question, adult F344 rats were injected with BrdU (50mg/kg/day for 5 days) and 4 weeks later explored a novel environment. Arc expression in both BrdU- and BrdU+ neurons was determined 0.5h, 1h, 2h, 6h, 8h, 12h, or 24h following this behavior. Recently-generated granule cells showed a robust sustained Arc expression following a discrete behavioral experience. These data provide information on a potential mechanism to sculpt the representations of events occurring within hours of each other to create uncorrelated representations of episodes despite a highly excitable population of neurons.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Giro Denteado/citologia , Giro Denteado/metabolismo , Masculino , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA