Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Sci Rep ; 10(1): 14491, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879407

RESUMO

GLI1 expression is broadly accepted as a marker of Hedgehog pathway activation in tumors. Efficacy of Hedgehog inhibitors is essentially limited to tumors bearing activating mutations of the pathway. GLI2, a critical Hedgehog effector, is necessary for GLI1 expression and is a direct transcriptional target of TGF-ß/SMAD signaling. We examined the expression correlations of GLI1/2 with TGFB and HH genes in 152 distinct transcriptome datasets totaling over 23,500 patients and representing 37 types of neoplasms. Their prognostic value was measured in over 15,000 clinically annotated tumor samples from 26 tumor types. In most tumor types, GLI1 and GLI2 follow a similar pattern of expression and are equally correlated with HH and TGFB genes. However, GLI1/2 broadly share prognostic value with TGFB genes and a mesenchymal/EMT signature, not with HH genes. Our results provide a likely explanation for the frequent failure of anti-Hedgehog therapies in tumors, as they suggest a key role for TGF-ß, not Hedgehog, ligands, in tumors with elevated GLI1/2-expression.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/genética , Neoplasias/diagnóstico , Proteínas Nucleares/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Ligantes , Análise Multivariada , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Transdução de Sinais/genética , Transcriptoma
3.
Biochem J ; 477(17): 3131-3145, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32766732

RESUMO

The Hedgehog-regulated transcription factors GLI1 and GLI2 play overlapping roles in development and disease; however, the mechanisms underlying their interplay remain elusive. We report for the first time that GLI1 and GLI2 physically and functionally interact in cancer cells. GLI1 and GLI2 were shown to co-immunoprecipitate in PANC1 pancreatic cancer cells and RMS13 rhabdomyosarcoma cells. Mapping analysis demonstrated that the zinc finger domains of both proteins are required for their heteromerization. RNAi knockdown of either GLI1 or GLI2 inhibited expression of many well-characterized GLI target genes (BCL2, MYCN, PTCH2, IL7 and CCND1) in PANC1 cells, whereas PTCH1 expression was only inhibited by GLI1 depletion. qPCR screening of a large set of putative canonical and non-canonical Hedgehog/GLI targets identified further genes (e.g. E2F1, BMP1, CDK2) strongly down-regulated by GLI1 and/or GLI2 depletion in PANC1 cells, and demonstrated that ANO1, AQP1 and SOCS1 are up-regulated by knockdown of either GLI1 or GLI2. Chromatin immunoprecipitation showed that GLI1 and GLI2 occupied the same regions at the BCL2, MYCN and CCND1 promoters. Furthermore, depletion of GLI1 inhibited GLI2 occupancy at these promoters, suggesting that GLI1/GLI2 interaction is required for the recruitment of GLI2 to these sites. Together, these findings indicate that GLI1 and GLI2 co-ordinately regulate the transcription of some genes, and provide mechanistic insight into the roles of GLI proteins in carcinogenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Rabdomiossarcoma/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Proteínas Hedgehog/genética , Humanos , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Multimerização Proteica , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética
4.
J Dermatol Sci ; 94(3): 321-329, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31208857

RESUMO

BACKGROUND: Tyrosinase-Related Protein 2 (TRP2) is an enzyme involved in melanogenesis, that also exerts proliferative, anti-apoptotic and immunogenic functions in melanoma cells. TRP2 transcription is regulated by the melanocytic master transcription factor MITF. GLI2, a transcription factor that acts downstream of Hedgehog signaling, is also a direct transcriptional target of the TGF-ß/SMAD pathway that contributes to melanoma progression and exerts transcriptional antagonistic activities against MITF. OBJECTIVES: To characterize the molecular events responsible for TGF-ß and GLI2 repression of TRP2 expression. METHODS: In silico promoter analysis, transient cell transfection experiments with 5'-end TRP2 promoter deletion constructs, chromatin immuno-precipitation, and site-directed promoter mutagenesis were used to dissect the molecular mechanisms of TRP2 gene regulation by TGF-ß and GLI2. RESULTS: We demonstrate that TGF-ß and GLI2-specific TRP2 repression involves direct mechanisms that occur in addition to MITF downregulation by TGF-ß and GLI2. We identify two functional GLI2 binding sites within the TRP2 promoter that are critical for TGF-ß and GLI2 responsiveness, one of them overlapping a CREB binding site. GLI2 and CREB competing for the same cis-element is associated with opposite transcriptional outcome. CONCLUSION: Our results further refine the understanding of how TGF-ß and GLI2 control the phenotypic plasticity of melanoma cells. In particular, we identify critical GLI2-binding cis-elements within the TRP2 promoter region that allow for its transcriptional repression independently from MITF concomitant downregulation.


Assuntos
Regulação Neoplásica da Expressão Gênica , Oxirredutases Intramoleculares/genética , Melanoma/genética , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Linhagem Celular Tumoral , Biologia Computacional , Humanos , Melanoma/patologia , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas/genética , Neoplasias Cutâneas/patologia , Transcrição Gênica
5.
Cell Cycle ; 15(16): 2174-2182, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27340936

RESUMO

Multiple myeloma (MM) is still an incurable hematological malignancy. Despite recent progress due to new anti-myeloma agents, the pathology is characterized by a high frequency of de novo or acquired resistance. Delineating the mechanisms of MM resistance is essential for therapeutic advances. We previously showed that long-term genotoxic stress induces the establishment of a senescence-associated secretory phenotype, a pro-inflammatory response that favors the emergence of cells with cancer stem-like properties. Here, we studied the short-term response of MM cells following treatment with various DNA damaging agents such as the energetic C-ion irradiation. MM cells are highly resistant to all treatments and do not enter apoptosis after they arrest cycling at the G2 phase. Although the DNA damage response pathway was activated, DNA breaks remained chronically in damaged MM cells. We found, using a transcriptomic approach that RAD50, a major DNA repair gene was downregulated early after genotoxic stress. In two gerosuppression situations: induction of hypoxia and inhibition of the mammalian target of rapamycin (mTOR) pathway, we observed, after the treatment with a DNA damaging agent, a normalization of RAD50 expression concomitant with the absence of cell cycle arrest. We propose that combining inhibitors of mTOR with genotoxic agents could avoid MM cells to senesce and secrete pro-inflammatory factors responsible for cancer stem-like cell emergence and, in turn, relapse of MM patients.


Assuntos
Senescência Celular/efeitos dos fármacos , Dano ao DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Sirolimo/farmacologia , Hidrolases Anidrido Ácido , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/efeitos da radiação , Humanos , Radiação Ionizante , Serina-Treonina Quinases TOR/metabolismo , Telômero/metabolismo , Raios X
6.
Dev Cell ; 32(5): 640-51, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25758862

RESUMO

Cell-cell contacts inhibit cell growth and proliferation in part by activating the Hippo pathway that drives the phosphorylation and nuclear exclusion of the transcriptional coactivators YAP and TAZ. Cell density and Hippo signaling have also been reported to block transforming growth factor ß (TGF-ß) responses, based on the ability of phospho-YAP/TAZ to sequester TGF-ß-activated SMAD complexes in the cytoplasm. Herein, we provide evidence that epithelial cell polarization interferes with TGF-ß signaling well upstream and independent of cytoplasmic YAP/TAZ. Rather, polarized basolateral presentation of TGF-ß receptors I and II deprives apically delivered TGF-ß of access to its receptors. Basolateral ligand delivery nonetheless remains entirely effective to induce TGF-ß responses. These data demonstrate that cell-type-specific inhibition of TGF-ß signaling by cell density is restricted to polarized epithelial cells and reflects the polarized distribution of TGF-ß receptors, which thus affects SMAD activation irrespective of Hippo pathway activation.


Assuntos
Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Aciltransferases , Western Blotting , Contagem de Células , Proteínas de Ciclo Celular , Proliferação de Células , Células Cultivadas , Imunofluorescência , Via de Sinalização Hippo , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Proteínas Nucleares/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética
7.
J Invest Dermatol ; 134(1): 123-132, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23897276

RESUMO

YAP and its paralog protein TAZ are downstream effectors of the Hippo pathway. Both are amplified in many human cancers and promote cell proliferation and epithelial-mesenchymal transition. Little is known about the status of the Hippo pathway in cutaneous melanoma. We profiled Hippo pathway component expression in a panel of human melanoma cell lines and melanocytic lesions, and characterized the capacity of YAP and TAZ to control melanoma cell behavior. YAP and TAZ immuno-staining in human samples revealed mixed cytoplasmic and nuclear staining for both proteins in benign nevi and superficial spreading melanoma. TAZ was expressed at higher levels than YAP1/2 in all cell lines and in those with high invasive potential. Stable YAP or TAZ knockdown dramatically reduced the expression of the classical Hippo target CCN2/connective-tissue growth factor (CTGF), as well as anchorage-independent growth, capacity to invade Matrigel, and ability form lung metastases in mice following tail-vein injection. YAP knockdown also reduced invasion in a model of skin reconstruct. Inversely, YAP overexpression increased melanoma cell invasiveness, associated with increased TEA domain-dependent transcription and CCN2/CTGF expression. Together, these results demonstrate that both YAP and TAZ contribute to the invasive and metastatic capacity of melanoma cells and may represent worthy targets for therapeutic intervention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melanoma/metabolismo , Fosfoproteínas/metabolismo , Neoplasias Cutâneas/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Via de Sinalização Hippo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma/patologia , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/patologia , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
8.
Oncotarget ; 4(6): 911-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23978789

RESUMO

Multiple myeloma (MM) is a malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Despite extensive efforts to design drugs targeting tumoral cells and their microenvironment, MM remains an incurable disease for which new therapeutic strategies are needed. We demonstrated here that antiestrogens (AEs) belonging to selective estrogen receptor modulators family induce a caspase-dependent apoptosis and trigger a protective autophagy. Autophagy was recognized by monodansylcadaverin staining, detection of autophagosomes by electronic microscopy, and detection of the cleaved form of the microtubule-associated protein light chain 3. Moreover, autophagy was inhibited by drugs such as bafilomycin A1 and 3-methyladenosine. Autophagy was mediated by the binding of AEs to a class of receptors called the antiestrogen binding site (AEBS) different from the classical estrogen nuclear receptors. The binding of specific ligands to the AEBS was accompanied by alteration of cholesterol metabolism and in particular accumulation of sterols: zymostenol or desmosterol depending on the ligand. This was due to the inhibition of the cholesterol-5,6-epoxide hydrolase activity borne by the AEBS. We further showed that the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin pathway mediated autophagy signaling. Moreover, AEBS ligands restored sensitivity to dexamethasone in resistant MM cells. Since we showed previously that AEs arrest MM tumor growth in xenografted mice, we propose that AEBS ligands may have a potent antimyeloma activity alone or in combination with drugs used in clinic.


Assuntos
Colesterol/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Ligantes , Mieloma Múltiplo/patologia
9.
Pigment Cell Melanoma Res ; 26(6): 861-73, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23890107

RESUMO

In melanoma cells, high expression of the transcription factor GLI2 is associated with increased invasive potential and loss of E-cadherin expression, an event reminiscent of the epithelial-to-mesenchymal transition (EMT). Herein, we provide evidence that GLI2 represses E-cadherin gene (CDH1) expression in melanoma cells via distinct mechanisms, enhancing transcription of the EMT-activator ZEB1 and cooperative repression of CDH1 gene transcription via direct binding of both GLI2 and ZEB1 to two closely positioned Kruppel-like factor-binding sites within the CDH1 promoter. GLI2 silencing rescued CDH1 expression except in melanoma cell lines in which the CDH1 promoter was hypermethylated. Proximity ligation assays identified GLI2-ZEB1 complexes in melanoma cell nuclei, proportional to endogenous GLI2 and ZEB1 expression, and whose accumulation was enhanced by the classical EMT inducer TGF-ß. These data identify GLI2 as a critical modulator of the cadherin switch in melanoma, a molecular process that is critical for metastatic spread of the disease.


Assuntos
Caderinas/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Melanoma/genética , Proteínas Nucleares/metabolismo , Neoplasias Cutâneas/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Antígenos CD , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/patologia , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Melanoma/patologia , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Transcrição da Família Snail , Transcrição Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Proteína Gli2 com Dedos de Zinco
10.
Biochem Pharmacol ; 85(4): 449-65, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23103568

RESUMO

In breast cancer (BC) epithelial cells, the mitogenic action of estradiol is transduced through binding to two receptors, ERα and ERß, which act as transcription factors. Anti-estrogens (AEs) and aromatase inhibitors (AIs) are used clinically to arrest the estrogen-dependent growth of BC. In the case of AE or AI resistance, Herceptin or lapatinib may be used to inhibit growth factors. Estrogen effects are mediated not only through nuclear ERs but also through cytoplasmic/membrane ERs and G-protein-coupled ERs. These estrogen-binding systems associate with various proteins that direct cell cycle signaling, proliferation and survival. The partners of nuclear ER include SRC1-3, HDACs and ERß itself as well as newly identified proteins, such as E6-AP, LKB1, PELP1, PAX-2 and FOXA1. The partners of extra-nuclear ERα include PI3K and the tyrosine kinase Src. These various factors are all potential targets for therapeutic intervention. In addition, BC proliferation is enhanced by insulin and EGF, which stimulate signaling through the MAPK and PI3K/AKT pathways by activation of the IGF-1R and EGFR axes, respectively. These pathways are tightly interconnected with ER-activated signaling, and membrane ERα forms complexes with Src and PI3K. Chemokine-mediated signaling also modulates the estrogen response. Inhibiting these pathways with specific inhibitors or activating some of the pathways by gene manipulation may be therapeutically valuable for arresting BC cell cycle progression and for inducing apoptosis to antagonize hormone-resistance. Here, we review some newly identified putatively targetable ER partners and highlight the need to develop tumor-targeting drug carrier systems affecting both the tumor cells and the tumor environment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Antineoplásicos/uso terapêutico , Feminino , Humanos
12.
Curr Top Med Chem ; 12(15): 1693-712, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22978336

RESUMO

For many years, nanocarriers have been investigated to modify pharmacokinetics and biodistribution of various active molecules. In the cancer domain, one of the biggest challenges still remains the improvement of the therapeutic index, often too low, for the majority of antitumor drugs. The application of nanotechnologies for the treatment and the diagnosis of cancers are nowadays currently developed, or under development, and liposomes play an important role in the history of nanodevices. Because of their high degree of biocompatibility, lipid nanosystems have been used to improve pharmacological profiles of various anticancer drugs otherwise discarded because of their low water solubility, poor bioavailability or either fragile and subjected to rapid biotransformations. This review aims at introducing an overview of the last 40 years of liposome researches until the last liposomal formulations commercially available or undergoing clinical trials. Liposome properties will be described, with a particular emphasis over the last generation of carriers appreciated for their active targeting characteristics. Researchers foresee a remarkable impact of nanotechnologies in the field of medicine; this review will try to summarize the main concepts over liposome domain, which can count on encouraging results as target therapy associated with targeted delivery.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Terapia de Alvo Molecular/métodos , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular/instrumentação , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Tecidual , Lipossomas Unilamelares
13.
J Biol Chem ; 287(22): 17996-8004, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22496449

RESUMO

The melanocyte-specific transcription factor M-MITF is involved in numerous aspects of melanoblast lineage biology including pigmentation, survival, and migration. It plays complex roles at all stages of melanoma progression and metastasis. We established previously that GLI2, a Kruppel-like transcription factor that acts downstream of Hedgehog signaling, is a direct transcriptional target of the TGF-ß/SMAD pathway and contributes to melanoma progression, exerting antagonistic activities against M-MITF to control melanoma cell invasiveness. Herein, we dissected the molecular mechanisms underlying both TGF-ß and GLI2-driven M-MITF gene repression. Using transient cell transfection experiments with M-MITF promoter constructs, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays, we identified a GLI2 binding site within the -334/-296 region of the M-MITF promoter, critical for GLI2-driven transcriptional repression. This region is, however, not needed for inhibition of M-MITF promoter activity by TGF-ß. We determined that TGF-ß rapidly repressed protein kinase A activity, thus reducing both phospho-cAMP-response element-binding protein (CREB) levels and CREB-dependent transcription of the M-MITF promoter. Increased GLI2 binding to its cognate cis-element, associated with reduced CREB-dependent transcription, allowed maximal inhibition of the M-MITF promoter via two distinct mechanisms.


Assuntos
Fatores de Transcrição Kruppel-Like/fisiologia , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Proteínas Nucleares/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Sequência de Bases , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , DNA de Neoplasias/genética , Progressão da Doença , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica , Humanos , Fator de Transcrição Associado à Microftalmia/fisiologia , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica , Proteína Gli2 com Dedos de Zinco
14.
Horm Mol Biol Clin Investig ; 6(2): 215-25, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25961258

RESUMO

BACKGROUND: Trichostatin A (TSA) is one of the most potent histone deacetylase inhibitors (HDACi) in vitro but it lacks biological activity in vivo when injected intravenously owing to its fast metabolism. MATERIALS AND METHODS: TSA was incorporated into Stealth® liposomes (TSA-lipo) at a high loading and its anticancer activity was evaluated in several types of breast cancer cells and xenografts. RESULTS: In estrogen receptor α (ERα)-positive MCF-7 and T47-D cells, TSA induced a long-term degradation of cyclin A and a proteasome-dependent loss of ERα and cyclin D1, allowed derepression of p21WAF1/CIP1, HDAC1 and RhoB GTPase, concomitantly with blockade in G2/M of the cell cycle and apoptosis induction. In MDA-MB-231 (MDA) and SKBr-3 cells, TSA increased ERα mRNA and p21WAF1/CIP1 protein expression, but decreased cyclin A with a G2/M blockade and cleavage of polyADP-ribose polymerase (PARP). No significant restoration of any ER protein was noticed in any cells. TSA-lipo markedly inhibited tumor growth in MCF-7 and MDA cells xenografts following intravenous injection. Their anticancer effects were characterized by inhibition of Ki-67 labeling, the inhibition of tumor vasculature and an increase of p21WAF1/CIP1 in both tumors. In MCF-7 cell tumors, enhanced RhoB accumulation in the cytoplasm of epithelial cells was noticed, inversely to ERα that was strongly decreased. CONCLUSION: Such anticancer activity of TSA-lipo is exp-lained by the protection provided by HDACi encapsulation and by the strong tumor accumulation of the nanocarriers as revealed by fluorescence confocal microscopy experi-ments. Together with its lack of toxicity, the enhanced stability of TSA-lipo in vivo justifies its development for therapeutic use in the treatment estradiol-dependent and -independent breast cancers.

15.
Int J Pharm ; 401(1-2): 103-12, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20854884

RESUMO

High energy ball milling (HEBM) has been used for the first time to prepare PEGylated magnetite-silica (Fe(3)O(4)-SiO(2)) nanocomposites intended to be used for biological purposes. Surface amine groups were introduced by a silanization reaction involving 3-aminopropyl triethoxysilane (APTS) followed by PEGylation to yield long-term stable and stealth nanocomposites of 200nm in diameter. The efficient coverage by PEG chains was shown by isothermal titration calorimetry (ITC) where PEGylated nanocomposites did not interact with BSA compared to non-PEGylated counterparts which led to a significant change in enthalpy. By cell viability (MTT) assays and cell morphology investigations, it was evidenced that PEGylated Fe(3)O(4)-SiO(2) nanocomposites did not provide any appreciable cytotoxicity on J774 macrophage and MCF-7 breast cancer cell lines. Furthermore, noticeable internalization was evidenced by J774 cells with PEGylated Fe(3)O(4)-SiO(2) nanocomposites in contrast to MCF-7 cells, in good agreement with the respective tendency of each cell line for endocytosis.


Assuntos
Materiais Biocompatíveis/química , Óxido Ferroso-Férrico/química , Nanocompostos/química , Polietilenoglicóis/química , Dióxido de Silício/química , Animais , Calorimetria , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Óxido Ferroso-Férrico/toxicidade , Humanos , Camundongos , Nanocompostos/toxicidade , Polietilenoglicóis/toxicidade , Dióxido de Silício/toxicidade , Tecnologia Farmacêutica
16.
Int J Pharm ; 397(1-2): 184-93, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20603204

RESUMO

Histone deacetylase (HDAC) inhibitors (HDACi) of the class I trichostatin A (TSA), CG1521 (CG), and PXD101 (PXD) were incorporated at a high rate (approximately 1mM) in liposomes made of egg phosphatidylcholine/cholesterol/distearoylphosphoethanolamine-polyethylenglycol(2000) (64:30:6). Physicochemical parameters (size, zeta potential, loading, stability, release kinetics) of these HDACi-loaded pegylated liposomes were optimized and their cytotoxicity (MTT test) was measured in MCF-7, T47-D, MDA-MB-231 and SkBr3 breast cancer cell lines. In MCF-7 cells, TSA and PXD were efficient inducers of proteasome-mediated estradiol receptor alpha degradation and they both affected estradiol-induced transcription (TSA>PXD) contrary to CG. Moreover, TSA most efficiently altered breast cancer cell viability as compared to the free drug, CG-liposomes being the weakest, while unloaded liposomes had nearly no cytotoxicity. Pegylated liposomes loaded with TSA or PXD remained stable in size, charge and biological activity for one month when stored at 4 degrees C. All HDACi-loaded liposomes released slowly the encapsulated drug in vitro, CG-loaded liposomes showed the slowest release kinetic. These formulations could improve the efficacy of HDACi not only in breast cancers but also in other solid tumors because most of these drugs are poor water soluble and unstable in vivo, and their administration remains a challenge.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Ácidos Hidroxâmicos/uso terapêutico , Lipossomos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Fenômenos Químicos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacocinética , Tamanho da Partícula , Sulfonamidas
17.
Mol Cancer ; 9: 103, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20459741

RESUMO

BACKGROUND: Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM) and always associated with mantle cell lymphoma (MCL). CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. RESULTS: To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. CONCLUSIONS: Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.


Assuntos
Ciclina D1/metabolismo , Ciclinas/metabolismo , Mieloma Múltiplo/metabolismo , Animais , Ciclo Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Separação Celular , Embrião de Galinha , Ciclina D1/genética , Ciclinas/genética , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Nus , Mieloma Múltiplo/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Chem Commun (Camb) ; 46(15): 2602-4, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449321

RESUMO

Rhodamine B-tagged poly(alkyl cyanoacrylate) amphiphilic copolymers have been synthesised, characterised and successfully used to prepare fluorescent nanoparticles for human brain endothelial cell imaging, allowing their uptake and intracellular trafficking to be finely observed.


Assuntos
Cianoacrilatos/química , Células Endoteliais/citologia , Corantes Fluorescentes/química , Nanopartículas/química , Polímeros/química , Encéfalo/citologia , Linhagem Celular , Humanos , Microscopia Confocal , Tamanho da Partícula , Polímeros/síntese química , Rodaminas/química
19.
Breast Cancer Res Treat ; 122(1): 145-58, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19771505

RESUMO

The suppression of oestrogen receptor alpha (ERalpha) functions by silencing RNAs in association with or not with anti-oestrogens (AEs) both in vitro and in breast cancer cell xenografts was assessed. In vitro, a prolonged decrease in ERalpha protein expression and an enhanced AE-induced inhibition of ERalpha-mediated transcription, together with antiproliferative activity, were observed. Incorporation of ERalpha-siRNAs in pegylated nanocapsules (NC) was achieved; and their intravenous injections in MCF-7 xenografts, in contrast to scramble siRNA containing NCs, lead to decrease in ERalpha protein content and Ki67 labelling in tumour cells. The pure AE RU58668 (RU) both free and entrapped in stealth nanospheres (NS) at very low concentration (8 microg/kg/week) had no effect on tumour growth evolution. However, coinjection of the two nanocarriers potentiated the decrease in ERalpha protein, concomitantly with decreasing tumour vasculature and glucose transporter-1. These data support that the targeted delivery of ERalpha-siRNA in breast tumours potentiates the inhibition of E(2)-induced proliferative activity by encapsulated AE through enhanced anti-vascular activity. In the hormone-independent MDA-MB-231 xenograft model, RU-NS at 4 mg/kg/week induce also a strong tumour vascular normalisation. Together, these findings suggest that the anti-oestrogen activity of RU as well as that of targeted ERalpha-siRNA leads to anti-angiogenic activity. Their delivery in stealth nanocarriers may constitute a new anti-cancer therapeutic strategy in solid tumours.


Assuntos
Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Estradiol/análogos & derivados , Moduladores de Receptor Estrogênico/uso terapêutico , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanocápsulas/administração & dosagem , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Hormônio-Dependentes/patologia , RNA Interferente Pequeno/uso terapêutico , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/transplante , Sinergismo Farmacológico , Estradiol/farmacologia , Estradiol/uso terapêutico , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Injeções Intravenosas , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Nanocápsulas/química , Nanosferas/administração & dosagem , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Poliésteres , Polietilenoglicóis , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologia , Organismos Livres de Patógenos Específicos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomaterials ; 31(7): 1723-31, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19948357

RESUMO

The surface of polymeric nanocapsules used as ultrasound contrast agents (UCAs) was modified with PEGylated phospholipids in order to escape recognition and clearance by the mononuclear phagocyte system and achieve passive tumor targeting. Nanocapsules consisted of a shell of poly(lactide-co-glycolide) (PLGA) encapsulating a liquid core of perfluorooctyl bromide (PFOB). They were decorated with poly(ethylene glycol-2000)-grafted distearoylphosphatidylethanolamine (DSPE-PEG) incorporated in the organic phase before the solvent emulsification-evaporation process. The influence of DSPE-PEG concentration on nanocapsule size, surface charge, morphology, hydrophobicity and complement activation was evaluated. Zeta potential measurements, Hydrophobic interaction chromatography and complement activation provide evidence of DSPE-PEG presence at nanocapsule surface. Electronic microscopy reveals that the core/shell structure is preserved up to 2.64 mg of DSPE-PEG for 100 mg PLGA. In vivo ultrasound imaging was performed in mice bearing xenograft tumor with MIA PaCa-2 cells, either after an intra-tumoral or intravenous injection of nanocapsules. Tumor was observed only after the intra-tumoral injection. Despite the absence of echogenic signal in the tumor after intravenous injection of nanocapsules, histological analysis reveals their accumulation within the tumor tissue demonstrating that tissue distribution is not the unique property required for ultrasound contrast agents to be efficient.


Assuntos
Meios de Contraste , Fluorocarbonos , Nanocápsulas , Polietilenoglicóis/química , Ultrassom , Animais , Cromatografia , Ativação do Complemento/imunologia , Complemento C3/imunologia , Eletroforese em Gel Bidimensional , Humanos , Hidrocarbonetos Bromados , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Nanocápsulas/ultraestrutura , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Tamanho da Partícula , Fosfatidiletanolaminas/química , Propriedades de Superfície , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA