Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611945

RESUMO

Porous aromatic frameworks (PAFs) are an auspicious class of materials that allow for the introduction of sulfonic acid groups at the aromatic core units by post-synthetic modification. This makes PAFs promising for proton-exchange materials. However, the limited thermal stability of sulfonic acid groups attached to aromatic cores prevents high-temperature applications. Here, we present a framework based on PAF-303 where the acid groups were added as methylene sulfonic acid side chains in a two-step post-synthetic route (SMPAF-303) via the intermediate chloromethylene PAF (ClMPAF-303). Elemental analysis, NMR spectroscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy were used to characterize both frameworks and corroborate the successful attachment of the side chains. The resulting framework SMPAF-303 features high thermal stability and an ion-exchange capacity of about 1.7 mequiv g-1. The proton conductivity depends strongly on the adsorbed water level. It reaches from about 10-7 S cm-1 for 33% RH to about 10-1 S cm-1 for 100% RH. We attribute the strong change to a locally alternating polarity of the inner surfaces. The latter introduces bottleneck effects for the water molecule and oxonium ion diffusion at lower relative humidities, due to electrolyte clustering. When the pores are completely filled with water, these bottlenecks vanish, leading to an unhindered electrolyte diffusion through the framework, explaining the conductivity rise.

2.
Small ; : e2311627, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462958

RESUMO

For a carbon-neutral society, the production of hydrogen as a clean fuel through water electrolysis is currently of great interest. Since water electrolysis is a laborious energetic reaction, it requires high energy to maintain efficient and sustainable production of hydrogen. Catalytic electrodes can reduce the required energy and minimize production costs. In this context, herein, a bifunctional electrocatalyst made from iron nickel sulfide (FeNi2 S4 [FNS]) for the overall electrochemical water splitting is introduced. Compared to Fe2 NiO4 (FNO), FNS shows a significantly improved performance toward both OER and HER in alkaline electrolytes. At the same time, the FNS electrode exhibits high activity toward the overall electrochemical water splitting, achieving a current density of 10 mA cm-2 at 1.63 V, which is favourable compared to previously published nonprecious electrocatalysts for overall water splitting. The long-term chronopotentiometry test reveals an activation followed by a subsequent stable overall cell potential at around 2.12 V for 20 h at 100 mA cm-2 .

3.
J Am Chem Soc ; 145(50): 27563-27575, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060438

RESUMO

Sulfonated, cross-linked porous polymers are promising frameworks for aqueous high-performance electrolyte-host systems for electrochemical energy storage and conversion. The systems offer high proton conductivities, excellent chemical and mechanical stabilities, and straightforward water management. However, little is known about mass transport mechanisms in such nanostructured hosts. We report on the synthesis and postsynthetic sulfonation of an aromatic framework (SPAF-2) with a 3D-interconnected nanoporosity and varying sulfonation degrees. Water adsorption produces the system SPAF-2H20. It features proton exchange capacities up to 6 mequiv g-1 and exceptional proton conductivities of about 1 S cm-1. Two contributions are essential for the highly efficient transport. First, the nanometer-sized pores link the charge transport to the diffusion of adsorbed water molecules, which is almost as fast as bulk water. Second, continuous exchange between interface-bound and mobile species enhances the conductivities at elevated temperatures. SPAF-2H20 showcases how to tailor nanostructured electrolyte-host systems with liquid-like conductivities.

4.
Inorg Chem ; 62(40): 16329-16342, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37756217

RESUMO

We report on a nonoxidative topochemical route for the synthesis of a novel indate-based oxyfluoride, LaBaInO3F2, using a low-temperature reaction of Ruddlesden-Popper-type LaBaInO4 with polyvinylidene difluoride as a fluorinating agent. The reaction involves the replacement of oxide ions with fluoride ions as well as the insertion of fluoride ions into the interstitial sites. From the characterization via powder X-ray diffraction (PXRD) and Rietveld analysis as well as automated electron diffraction tomography (ADT), it is deduced that the fluorination results in a symmetry lowering from I4/mmm (139) to monoclinic C2/c (15) with an expansion perpendicular to the perovskite layers and a strong tilting of the octahedra in the ab plane. Disorder of the anions on the apical and interstitial sites seems to be favored. The most stable configuration for the anion ordering is estimated based on an evaluation of bond distances from the ADT measurements via bond valence sums (BVSs). The observed disordering of the anions in the oxyfluoride results in changes in the optical properties and thus shows that the topochemical anion modification can present a viable route to alter the optical properties. Partial densities of states (PDOSs) obtained from ab initio density functional theory (DFT) calculations reveal a bandgap modification upon fluoride-ion introduction which originates from the presence of the oxide anions on the interstitial sites. The photocatalytic performance of the oxide and oxyfluoride shows that both materials are photocatalytically active for hydrogen (H2) evolution.

5.
Commun Chem ; 6(1): 50, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928610

RESUMO

Ag catalysts show high selectivities in the conversion of carbon dioxide to carbon monoxide during the electrochemical carbon dioxide reduction reaction (CO2RR). Indeed, highly catalytically active porous electrodes with increased surface area achieve faradaic conversion efficiencies close to 100%. To establish reliable structure-property relationships, the results of qualitative structural analysis need to be complemented by a more quantitative approach to assess the overall picture. In this paper, we present a combination of suitable methods to characterize foam electrodes, which were synthesised by the Dynamic Hydrogen Bubble Templation (DHBT) approach to be used for the CO2RR. Physicochemical and microscopic techniques in conjunction with electrochemical analyses provide insight into the structure of the carefully tailored electrodes. By elucidating the morphology, we were able to link the electrochemical deposition at higher current densities to a more homogenous and dense structure and hence, achieve a better performance in the conversion of CO2 to valuable products.

6.
Top Curr Chem (Cham) ; 380(6): 53, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269440

RESUMO

The formation of semiconductor heterojunctions and Z-schemes is still a very prominent and efficient strategy of materials chemists to extend the absorption range of semiconductor combinations. Moreover, the spatial separation of photoexcited charge carriers and thereby the reduction of their recombination ultimately lead to increased photocatalytic activities. The present article reviews recent trends in semiconductor heterojunctions and Z-schemes with a focus on hydrogen generation and water splitting, exhibiting specific needs for charge carrier separation. We also included recent material trends, i.e. 2D/2D combinations, direct Z-schemes, MOFs and COFs, and combinations with upconversion materials.


Assuntos
Semicondutores , Água , Hidrogênio
7.
Photochem Photobiol Sci ; 21(11): 1991-2000, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35915353

RESUMO

Wide band gap semiconductor niobate photocatalysts with Dion-Jacobson layered perovskite structure were nitrogen-doped via simple gas-solid reaction to extend their absorption into the visible light range. Nitrogen doping was performed using ammonia as precursor, resulting in decreased band gaps of doped AB2Nb3O10 compounds (A = Cs, Rb, K; B = Ca, Sr) down to 2.5 eV. The resulting materials were investigated concerning their chemical and electronic structures. Nitrogen-doped AB2Nb3O10 crystals showed a clear red shift in absorption. Photocatalytic performance tests for the doped materials evaluated the capability of H2 production under simulated solar irradiation. The addition of carbonates to the gas-solid reaction turned out to be advantageous for the reduction of defects and the preservation of photocatalytic activity of nitrogen-doped layered niobates AB2Nb3O10.

8.
Angew Chem Int Ed Engl ; 61(15): e202117570, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129881

RESUMO

Responsive fluorescent materials offer a high potential for sensing and (bio-)imaging applications. To investigate new concepts for such materials and to broaden their applicability, the previously reported non-fluorescent zinc(II) complex [Zn(L)] that shows coordination-induced turn-on emission was encapsulated into a family of non-fluorescent polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles leading to brightly emissive materials. Coordination-induced turn-on emission upon incorporation and ligation of the [Zn(L)] in the P4VP core outperform parent [Zn(L)] in pyridine solution with respect to lifetimes, quantum yields, and temperature resistance. The quantum yield can be easily tuned by tailoring the selectivity of the employed solvent or solvent mixture and, thus, the tendency of the PS-b-P4VP diblock copolymers to self-assemble into micelles. A medium-dependent off-on sensor upon micelle formation could be established by suppression of non-micelle-borne emission background pertinent to chloroform through controlled acidification indicating an additional pH-dependent process.


Assuntos
Micelas , Polímeros , Solventes
9.
Chemistry ; 27(68): 16990-17001, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227717

RESUMO

Phase-pure spinel-type magnetic nickel ferrite (NiFe2 O4 ) nanocrystals in the size range of 4 to 11 nm were successfully synthesized by a fast and energy-saving microwave-assisted approach. Size and accessible surface areas can be tuned precisely by the reaction parameters. Our results highlight the correlation between size, degree of inversion, and magnetic characteristics of NiFe2 O4 nanoparticles, which enables fine-tuning of these parameters for a particular application without changing the elemental composition. Moreover, the application potential of the synthesized powders for the electrocatalytic oxygen evolution reaction in alkaline media was demonstrated, showing that a low degree of inversion is beneficial for the overall performance. The most active sample reaches an overpotential of 380 mV for water oxidation at 10 mA cm-2 and 38.8 mA cm-2 at 1.7 V vs. RHE, combined with a low Tafel slope of 63 mV dec-1 .

10.
Environ Sci Pollut Res Int ; 28(5): 6222-6231, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996090

RESUMO

Cationic cylindrical polymer brushes based on polybutadiene-block-poly(2-vinylpyridine) were applied as structure-directing agent for mesostructuring Fe2O3 nanoparticles into nanotubes. After temperature-controlled template removal, the obtained non-woven catalysts were tested for the photodegradation of ciprofloxacin under terrestrial solar radiation. At a slightly basic pH value, as typically encountered in clinical wastewaters, the mesostructured Fe2O3 shows a 4.5 times faster degradation of ciprofloxacin than commercial Aeroxide® TiO2 P25. Even wide-bandgap ZnO, mesostructured in the same way, is 1.6 times slower. Moreover, the non-woven-like structure of the catalyst allows for easy recovery of the catalyst and operation in a continuous flow reactor. Graphical abstract.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Catálise , Ciprofloxacina , Ferro , Óxidos , Titânio
11.
Inorg Chem ; 59(12): 8387-8395, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32463666

RESUMO

The niobium tellurium oxides ANbTeO6 with varying A cations (A = K, Rb, Cs) and defect-pyrochlore crystal structure were used to investigate the effect of A on crystal-structure deformation and defect-chemistry. We show that the light absorption of these compounds in visible light is due to defects and not the effect of a low band gap. Using the materials in photocatalytic hydrogen generation, the prevailing defects and the surface composition change significantly during photocatalytic hydrogen evolution.

12.
Faraday Discuss ; 215(0): 216-226, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-30942205

RESUMO

The efficient reduction of protons by non-noble metals under mild conditions is a challenge for our modern society. Nature utilises hydrogenases, enzymatic machineries that comprise iron- and nickel- containing active sites, to perform the conversion of protons to hydrogen. We herein report a straightforward synthetic pathway towards well-defined particles of the bio-inspired material FexNi9-xS8, a structural and functional analogue of hydrogenase metal sulfur clusters. Moreover, the potential of pentlandites to serve as photocatalysts for solar-driven H2-production is assessed for the first time. The FexNi9-xS8 materials are visible light responsive (band gaps between 2.02 and 2.49 eV, depending on the pentlandite's Fe : Ni content) and display a conduction band energy close to the thermodynamic potential for proton reduction. Despite the limited driving force, a modest activity for photocatalytic H2 has been observed. Our observations show the potential for the future development of pentlandites as photocatalysts. This work provides a basis to explore powerful synergies between biomimetic chemistry and material design to unlock novel applications in solar energy conversion.

13.
Inorg Chem ; 58(4): 2599-2609, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30681841

RESUMO

TiO2 monoliths were synthesized by a partially hindered sol-gel process. Various synthesis parameters like precursor concentrations and gelation temperature were varied to investigate changes in the macroporosity (being in the range of micrometers) and to determine influences on the macropore formation mechanism. Ionic liquids (ILs) were used as templates to vary the mesopore size independently from the macropore size. Depending on the synthesis parameters, TiO2 monoliths with exclusive mesoporosity or with hierarchical meso-/macropore structure were received, and the range of macropores can be shifted between 100 nm and 10 µm without influencing the mesopore diameter. Pore volumes up to 880 mm3/g were achieved, as determined by mercury intrusion porosimetry. The mesopores' diameter can be adjusted between 6 and 25 nm by adding different amounts of IL, and surface areas up to 260 m2/g and mesopore volumes of 0.5 cm3/g were obtained, based on N2-physisorption measurements. The monoliths were cladded by polymer, allowing for studying the flow-through properties depending on the macropore size. This precise control for tailored macropores enables the design of optimized TiO2 monoliths with respect to the desired application requirements.

14.
RSC Adv ; 9(13): 7278-7284, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519977

RESUMO

Ionic/protonic to electronic transducers based on organic thin film transistors have shown great promise for applications in bioelectronic interface devices and biosensors, and development of materials that exhibit mixed ionic/electronic conduction are an essential part of these devices. In this work, we investigated the proton sensing properties of an all solid-state and low voltage operating organic thin film transistor (OTFT) that uses the organic mixed conductor poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) as the gate electrode. To address the limited sensitivity due to the lack of porosity in PEDOT:PSS base sensors, we proposed a composite gate electrode material composed of PEDOT:PSS and proton conducting mesoporous SO3H-Si-MCM-41 nanoparticles for improved proton sensitivity. The composite gate electrode doubles the proton sensitivity of the OTFT, indicating a clear advantage of adding SO3H-Si-MCM-41 in the PEDOT:PSS gate. Moreover, the OTFTs with the composite gate electrode maintained OTFT characteristics similar to that of the PEDOT:PSS gated OTFT. A detailed and systematic study of the effect of variation in the composition of PEDOT:PSS:SO3H-Si-MCM-41 on OTFT characteristics and sensing properties is carried out. Our results open up the possibility of combining inorganic nanomaterials with organic conductors in the development of highly efficient bioelectronic sensing platforms.

15.
Inorg Chem ; 57(21): 13104-13114, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30303381

RESUMO

ZnS nanosystems are being extensively studied for their possible use in a wide range of technological applications. Recently, the gradual oxidation of ZnS to ZnO was exploited to tune their structural, electronic, and functional properties. However, the inherent complexity and size dependence of the ZnS oxidation phenomena resulted in a very fragmented description of the process. In this work, different-sized nanosystems were obtained through two different low temperature wet chemistry routes, namely, hydrothermal and inverse miniemulsion approaches. These protocols were used to obtain ZnS samples consisting of 21 and 7 nm crystallites, respectively, to be used as reference material. The obtained samples were then calcinated at different temperatures, ranging from 400 to 800 °C toward the complete oxidation of ZnO, passing through the coexistence of the two phases (ZnS/ZnO). A thorough comparison of the effects of thermal handling on ZnS structural, chemical, and functional evolution was carried out by TEM, XRD, XAS, XPS, Raman, FT-IR, and UV-Vis. Finally, the photocatalytic activity in the H2 evolution reaction was also compared for selected ZnS and ZnS/ZnO samples. A correlation between size and the oxidation process was observed, as the smaller nanosystems showed the formation of ZnO at lower temperature, or in a larger amount in the case of the ZnS and ZnO co-presence. A difference in the underlying mechanism of the reaction was also evidenced. Despite the ZnS/ZnO mixed samples being characterized by an increased light absorption in the visible range, their photocatalytic activity was found to be much lower.

16.
Chemistry ; 24(69): 18535-18543, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30332500

RESUMO

The defect pyrochlore KTaWO6 has been used to systematically investigate the effect of SnII incorporation conditions on the band structure and subsequent photocatalytic properties. Different tin precursors show varying influence on the resulting band gap. While the optimum conditions diminish the band gap by up to 1.4 eV, the increase in visible light absorption does not correlate with an increase of photocatalytic activity.

17.
Chemphyschem ; 19(18): 2313-2320, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29873440

RESUMO

Mesoporous ZnFe2 O4 photoanodes have been prepared via dip-coating utilizing the evaporation-induced self-assembly of two different block-copolymer templates to investigate the influence of pore geometry on the photoelectrochemcial performance of those earth-abundant photoelectrodes. The use of commercial block copolymers, triblock copolymer Pluronic® F127 and the diblock copolymer PIB3000 as templates, leads to different pore morphologies under identical preparation conditions due to different polymer stabilities. Interestingly, pore morphology in mesoporous ZnFe2 O4 turned out to be less important for the photoelectrochemical performance. Contrary, sufficiently developed crystalline domains gained through optimized temperature treatment resulted in maximum photoelectrochemical performance among the investigated samples. This disproves the necessity of expensive, tailor-made polymer soft templates to synthesize high-performing mesoporous ZnFe2 O4 photoanodes.

18.
Nanoscale ; 10(20): 9691-9697, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29762615

RESUMO

The defect-pyrochlore stuctured semiconductor KTaWO6 has been prepared via hydrothermal synthesis, resulting in single-crystalline nanoparticles with adjustable crystallite size between 15 and 24 nm. With subsequent ion-exhange of K with Sn(ii) the band gap of this complex semiconductor can be reduced by 1.3 eV. We show that the ion-exchange is greatly facilitated by the incorporation of water into the crystal lattice.

19.
Nanoscale ; 10(7): 3225-3234, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29383360

RESUMO

We have prepared the first crystalline and 3D periodically ordered mesoporous quaternary semiconductor photocatalyst in an evaporation-induced self-assembly assisted soft-templating process. Using lab synthesized triblock-terpolymer poly(isoprene-b-styrene-b-ethylene oxide) (ISO) a highly ordered 3D interconnected alternating gyroid morphology was achieved exhibiting near and long-range order, as evidenced by small angle X-ray scattering (SAXS) and electron microscopy (TEM/SEM). Moreover, we reveal the formation process on the phase-pure construction of the material's pore-walls with its high crystallinity, which proceeds along a highly stable W5+ compound, by both in situ and ex situ analyses, including X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR). The resulting photocatalyst CsTaWO6 with its optimum balance between surface area and ordered mesoporosity ultimately shows superior hydrogen evolution rates over its non-ordered reference in photocatalytic hydrogen production. This work will help to advance new self-assembly preparation pathways towards multi-element multifunctional compounds for different applications, including improved battery and sensor electrode materials.

20.
ACS Appl Mater Interfaces ; 8(38): 25476-88, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27598017

RESUMO

Porous organic-inorganic hybrid monoliths with hierarchical porosity exhibiting macro- and mesopores are prepared via sol-gel process under variation of the mesopore size. Organic moieties in the pore walls are incorporated by substituting up to 10% of the silicon precursor tetramethylorthosilicate with bisilylated benzene molecules. After functionalization with sulfonic acid groups, the resulting sulfonated hybrid monoliths featuring a bimodal pore structure are investigated regarding proton conduction depending on temperature and relative humidity. The hierarchical pore system and controlled mesopore design turn out to be crucial for sulfonation and proton conduction. These sulfonated hybrid hierarchical monoliths containing only 10% organic precursor exhibit higher proton conduction at different relative humidities than sulfonated periodic mesoporous organosilica made of 100% bisilylated precursors exhibiting solely mesopores, even with a lower concentration of sulfonic acid groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA