Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Immunol ; 15: 1410832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975335

RESUMO

Introduction: Aging increases the risk of atherosclerotic vascular disease and its complications. Macrophages are pivotal in the pathogenesis of vascular aging, driving inflammation and atherosclerosis progression. NOX4 (NADPH oxidase 4) expression increases with age, correlating with mitochondrial dysfunction, inflammation, and atherosclerosis. We hypothesized that the NOX4-dependent mitochondrial oxidative stress promotes aging-associated atherosclerosis progression by causing metabolic dysfunction and inflammatory phenotype switch in macrophages. Methods: We studied atherosclerotic lesion morphology and macrophage phenotype in young (5-month-old) and aged (16-month-old) Nox4 -/-/Apoe -/- and Apoe -/- mice fed Western diet. Results: Young Nox4-/-/Apoe-/- and Apoe-/- mice had comparable aortic and brachiocephalic artery atherosclerotic lesion cross-sectional areas. Aged mice showed significantly increased lesion area compared with young mice. Aged Nox4-/-/Apoe-/- had significantly lower lesion areas than Apoe-/- mice. Compared with Apoe-/- mice, atherosclerotic lesions in aged Nox4-/-/Apoe-/- showed reduced cellular and mitochondrial ROS and oxidative DNA damage, lower necrotic core area, higher collagen content, and decreased inflammatory cytokine expression. Immunofluorescence and flow cytometry analysis revealed that aged Apoe-/- mice had a higher percentage of classically activated pro-inflammatory macrophages (CD38+CD80+) in the lesions. Aged Nox4-/-/Apoe-/- mice had a significantly higher proportion of alternatively activated pro-resolving macrophages (EGR2+/CD163+CD206+) in the lesions, with an increased CD38+/EGR2+ cell ratio compared with Apoe-/- mice. Mitochondrial respiration assessment revealed impaired oxidative phosphorylation and increased glycolytic ATP production in macrophages from aged Apoe-/- mice. In contrast, macrophages from Nox4-/-/Apoe-/- mice were less glycolytic and more aerobic, with preserved basal and maximal respiration and mitochondrial ATP production. Macrophages from Nox4-/-/Apoe-/- mice also had lower mitochondrial ROS levels and reduced IL1ß secretion; flow cytometry analysis showed fewer CD38+ cells after IFNγ+LPS treatment and more EGR2+ cells after IL4 treatment than in Apoe-/- macrophages. In aged Apoe-/- mice, inhibition of NOX4 activity using GKT137831 significantly reduced macrophage mitochondrial ROS and improved mitochondrial function, resulting in decreased CD68+CD80+ and increased CD163+CD206+ lesion macrophage proportion and attenuated atherosclerosis. Discussion: Our findings suggest that increased NOX4 in aging drives macrophage mitochondrial dysfunction, glycolytic metabolic switch, and pro-inflammatory phenotype, advancing atherosclerosis. Inhibiting NOX4 or mitochondrial dysfunction could alleviate vascular inflammation and atherosclerosis, preserving plaque integrity.


Assuntos
Envelhecimento , Aterosclerose , Macrófagos , Mitocôndrias , NADPH Oxidase 4 , Fenótipo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/etiologia , Aterosclerose/imunologia , Mitocôndrias/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Envelhecimento/imunologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/genética , Progressão da Doença , Camundongos Knockout , Estresse Oxidativo , Inflamação/imunologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Masculino , Modelos Animais de Doenças , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , Camundongos Knockout para ApoE , Reprogramação Metabólica
2.
Nature ; 630(8017): 720-727, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839949

RESUMO

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Assuntos
Dieta Hiperlipídica , Epigênese Genética , Mitocôndrias , RNA Mitocondrial , Espermatozoides , Animais , Feminino , Humanos , Masculino , Camundongos , Índice de Massa Corporal , Dieta Hiperlipídica/efeitos adversos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Epididimo/citologia , Epigênese Genética/genética , Fertilização/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/etiologia , Oócitos/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Herança Paterna/genética , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Espermatozoides/metabolismo , Testículo/citologia , Transcrição Gênica
3.
Redox Biol ; 67: 102937, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37871532

RESUMO

In acute sympathetic stress, catecholamine overload can lead to stress cardiomyopathy. We tested the hypothesis that cardiomyocyte NOX4 (NADPH oxidase 4)-dependent mitochondrial oxidative stress mediates inflammation and diastolic dysfunction in stress cardiomyopathy. Isoproterenol (ISO; 5 mg/kg) injection induced sympathetic stress in wild-type and cardiomyocyte (CM)-specific Nox4 knockout (Nox4CM-/-) mice. Wild-type mice treated with ISO showed higher CM NOX4 expression, H2O2 levels, inflammasome activation, and IL18, IL6, CCL2, and TNFα levels than Nox4CM-/- mice. Spectral flow cytometry and t-SNE analysis of cardiac cell suspensions showed significant increases in pro-inflammatory and pro-fibrotic embryonic-derived resident (CCR2-MHCIIhiCX3CR1hi) macrophages in wild-type mice 3 days after ISO treatment, whereas Nox4CM-/- mice had a higher proportion of embryonic-derived resident tissue-repair (CCR2-MHCIIloCX3CR1lo) macrophages. A significant increase in cardiac fibroblast activation and interstitial collagen deposition and a restrictive pattern of diastolic dysfunction with increased filling pressure was observed in wild-type hearts compared with Nox4CM-/- 7 days post-ISO. A selective NOX4 inhibitor, GKT137831, reduced myocardial mitochondrial ROS, macrophage infiltration, and fibrosis in ISO-injected wild-type mice, and preserved diastolic function. Our data suggest sympathetic overstimulation induces resident macrophage (CCR2-MHCII+) activation and myocardial inflammation, resulting in fibrosis and impaired diastolic function mediated by CM NOX4-dependent ROS.


Assuntos
Miócitos Cardíacos , Cardiomiopatia de Takotsubo , Animais , Camundongos , Fibrose , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Miócitos Cardíacos/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatia de Takotsubo/metabolismo , Cardiomiopatia de Takotsubo/patologia
4.
Antioxidants (Basel) ; 12(10)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37891912

RESUMO

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and its prevalence increases with age. The irregular and rapid contraction of the atria can lead to ineffective blood pumping, local blood stasis, blood clots, ischemic stroke, and heart failure. NADPH oxidases (NOX) and mitochondria are the main sources of reactive oxygen species in the heart, and dysregulated activation of NOX and mitochondrial dysfunction are associated with AF pathogenesis. NOX- and mitochondria-derived oxidative stress contribute to the onset of paroxysmal AF by inducing electrophysiological changes in atrial myocytes and structural remodeling in the atria. Because high atrial activity causes cardiac myocytes to expend extremely high energy to maintain excitation-contraction coupling during persistent AF, mitochondria, the primary energy source, undergo metabolic stress, affecting their morphology, Ca2+ handling, and ATP generation. In this review, we discuss the role of oxidative stress in activating AF-triggered activities, regulating intracellular Ca2+ handling, and functional and anatomical reentry mechanisms, all of which are associated with AF initiation, perpetuation, and progression. Changes in the extracellular matrix, inflammation, ion channel expression and function, myofibril structure, and mitochondrial function occur during the early transitional stages of AF, opening a window of opportunity to target NOX and mitochondria-derived oxidative stress using isoform-specific NOX inhibitors and mitochondrial ROS scavengers, as well as drugs that improve mitochondrial dynamics and metabolism to treat persistent AF and its transition to permanent AF.

5.
Am J Physiol Renal Physiol ; 324(4): F335-F352, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759130

RESUMO

Activation of NADPH oxidase (NOX) enzymes and the generation of reactive oxygen species and oxidative stress regulate vascular and renal function and contribute to the pathogenesis of hypertension. The present study examined the role of NOXA1/NOX1 function in vascular reactivity of renal and mesenteric resistance arteries/arterioles of wild-type and Noxa1-/- mice. A major finding was that renal blood flow is less sensitive to acute stimulation by angiotensin II (ANG II) in Noxa1-/- mice compared with wild-type mice, with a direct action on resistance arterioles independent of nitric oxide (NO) bioavailability. These functional results were reinforced by immunofluorescence evidence of NOXA1/NOX1 protein presence in renal arteries, afferent arterioles, and glomeruli as well as their upregulation by ANG II. In contrast, the renal vascular response to the thromboxane mimetic U46619 was effectively blunted by NO and was similar in both mouse genotypes and thus independent of NOXA1/NOX1 signaling. However, phenylephrine- and ANG II-induced contraction of isolated mesenteric arteries was less pronounced and buffering of vasoconstriction after acetylcholine and nitroprusside stimulation was reduced in Noxa1-/- mice, suggesting endothelial NO-dependent mechanisms. An involvement of NOXA1/NOX1/O2•- signaling in response to ANG II was demonstrated with the specific NOXA1/NOX1 assembly inhibitor C25 and the nonspecific NOX inhibitor diphenyleneiodonium chloride in cultured vascular smooth muscle cells and isolated mesenteric resistance arteries. Collectively, our data indicate that the NOX1/NOXA1/O2•- pathway contributes to acute vasoconstriction induced by ANG II in renal and mesenteric vascular beds and may contribute to ANG II-induced hypertension.NEW & NOTEWORTHY Renal reactivity to angiotensin II (ANG II) is mediated by superoxide signaling produced by NADPH oxidase (NOX)A1/NOX1. Acute vasoconstriction of renal arteries by ANG was blunted in Noxa1-/- compared with wild-type mice. NOXA1/NOX1/O2•- signaling was also observed in ANG II stimulation of vascular smooth muscle cells and isolated mesenteric resistance arteries, indicating that it contributes to ANG II-induced hypertension. A NOXA1/NOX1 assembly inhibitor (C25) has been characterized that inhibits superoxide production and ameliorates the effects of ANG II.


Assuntos
Hipertensão , Superóxidos , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Rim/metabolismo , NADPH Oxidases/metabolismo , Superóxidos/metabolismo
6.
Sci China Life Sci ; 66(5): 1067-1078, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36449214

RESUMO

Rapid over-activation of ß-adrenergic receptors (ß-AR) following acute stress initiates cardiac inflammation and injury by activating interleukin-18 (IL-18), however, the process of inflammation cascades has not been fully illustrated. The present study aimed to determine the mechanisms of cardiac inflammatory amplification following acute sympathetic activation. With bioinformatics analysis, galectin-3 was identified as a potential key downstream effector of ß-AR and IL-18 activation. The serum level of galectin-3 was positively correlated with norepinephrine or IL-18 in patients with chest pain. In the heart of mice treated with ß-AR agonist isoproterenol (ISO, 5 mg kg-1), galectin-3 expression was upregulated markedly later than IL-18 activation, and Nlrp3-/- and Il18-/- mice did not show ISO-induced galectin-3 upregulation. It was further revealed that cardiomyocyte-derived IL-18 induced galectin-3 expression in macrophages following ISO treatment. Moreover, galectin-3 deficiency suppressed ISO-induced cardiac inflammation and fibrosis without blocking ISO-induced IL-18 increase. Treatment with a galectin-3 inhibitor, but not a ß-blocker, one day after ISO treatment effectively attenuated cardiac inflammation and injury. In conclusion, galectin-3 is upregulated to exaggerate cardiac inflammation and injury following acute ß-AR activation, a galectin-3 inhibitor effectively blocks cardiac injury one day after ß-AR insult.


Assuntos
Galectina 3 , Interleucina-18 , Animais , Camundongos , Galectina 3/genética , Galectina 3/metabolismo , Galectina 3/farmacologia , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Arritmias Cardíacas , Fibrose , Inflamação/metabolismo
7.
Am J Physiol Renal Physiol ; 323(6): F633-F641, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201326

RESUMO

The activity of the epithelial Na+ channel (ENaC) in principal cells of the distal nephron fine-tunes renal Na+ excretion. The renin-angiotensin-aldosterone system modulates ENaC activity to control blood pressure, in part, by influencing Na+ excretion. NADPH oxidase activator 1-dependent NADPH oxidase 1 (NOXA1/NOX1) signaling may play a key role in angiotensin II (ANG II)-dependent activation of ENaC. The present study aimed to explore the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC in renal principal cells. Patch-clamp electrophysiology and principal cell-specific Noxa1 knockout (PC-Noxa1 KO) mice were used to determine the role of NOXA1/NOX1 signaling in ANG II-dependent activation of ENaC. The activity of ENaC in the luminal plasma membrane of principal cells was quantified in freshly isolated split-opened tubules using voltage-clamp electrophysiology. ANG II significantly increased ENaC activity. This effect was robust and observed in response to both acute (40 min) and more chronic (48-72 h) ANG II treatment of isolated tubules and mice, respectively. Inhibition of ANG II type 1 receptors with losartan abolished ANG II-dependent stimulation of ENaC. Similarly, treatment with ML171, a specific inhibitor of NOX1, abolished stimulation of ENaC by ANG II. Treatment with ANG II failed to increase ENaC activity in principal cells in tubules isolated from the PC-Noxa1 KO mouse. Tubules from wild-type littermate controls, though, retained their ability to respond to ANG II with an increase in ENaC activity. These results indicate that NOXA1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells. As such, NOXA1/NOX1 signaling in the distal nephron plays a central role in Na+ homeostasis and control of blood pressure, particularly as it relates to regulation by the renin-ANG II axis.NEW & NOTEWORTHY Activity of the epithelial Na+ channel (ENaC) in the distal nephron fine-tunes renal Na+ excretion. Angiotensin II (ANG II) has been reported to enhance ENaC activity. Emerging evidence suggests that NADPH oxidase (NOX) signaling plays an important role in the stimulation of ENaC by ANG II in principal cells. The present findings indicate that NOX activator 1/NOX1 signaling mediates ANG II stimulation of ENaC in renal principal cells.


Assuntos
Angiotensina II , Canais Epiteliais de Sódio , Animais , Camundongos , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , NADPH Oxidase 1/metabolismo , Sódio/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
Redox Biol ; 57: 102474, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36183542

RESUMO

Diastolic dysfunction (DD) underlies heart failure with preserved ejection fraction (HFpEF), a clinical syndrome associated with aging that is becoming more prevalent. Despite extensive clinical studies, no effective treatment exists for HFpEF. Recent findings suggest that oxidative stress contributes to the pathophysiology of DD, but molecular mechanisms underpinning redox-sensitive cardiac remodeling in DD remain obscure. Using transgenic mice with mitochondria-targeted NOX4 overexpression (Nox4TG618) as a model, we demonstrate that NOX4-dependent mitochondrial oxidative stress induces DD in mice as measured by increased E/E', isovolumic relaxation time, Tau Glantz and reduced dP/dtmin while EF is preserved. In Nox4TG618 mice, fragmentation of cardiomyocyte mitochondria, increased DRP1 phosphorylation, decreased expression of MFN2, and a higher percentage of apoptotic cells in the myocardium are associated with lower ATP-driven and maximal mitochondrial oxygen consumption rates, a decrease in respiratory reserve, and a decrease in citrate synthase and Complex I activities. Transgenic mice have an increased concentration of TGFß and osteopontin in LV lysates, as well as MCP-1 in plasma, which correlates with a higher percentage of LV myocardial periostin- and ACTA2-positive cells compared with wild-type mice. Accordingly, the levels of ECM as measured by Picrosirius Red staining as well as interstitial deposition of collagen I are elevated in the myocardium of Nox4TG618 mice. The LV tissue of Nox4TG618 mice also exhibited increased ICaL current, calpain 2 expression, and altered/disrupted Z-disc structure. As it pertains to human pathology, similar changes were found in samples of LV from patients with DD. Finally, treatment with GKT137831, a specific NOX1 and NOX4 inhibitor, or overexpression of mCAT attenuated myocardial fibrosis and prevented DD in the Nox4TG618 mice. Together, our results indicate that mitochondrial oxidative stress contributes to DD by causing mitochondrial dysfunction, impaired mitochondrial dynamics, increased synthesis of pro-inflammatory and pro-fibrotic cytokines, activation of fibroblasts, and the accumulation of extracellular matrix, which leads to interstitial fibrosis and passive stiffness of the myocardium. Further, mitochondrial oxidative stress increases cardiomyocyte Ca2+ influx, which worsens CM relaxation and raises the LV filling pressure in conjunction with structural proteolytic damage.

9.
JCI Insight ; 7(10)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35603785

RESUMO

Loss-of-function (LOF) variants in SCN1B, encoding the voltage-gated sodium channel ß1/ß1B subunits, are linked to neurological and cardiovascular diseases. Scn1b-null mice have spontaneous seizures and ventricular arrhythmias and die by approximately 21 days after birth. ß1/ß1B Subunits play critical roles in regulating the excitability of ventricular cardiomyocytes and maintaining ventricular rhythmicity. However, whether they also regulate atrial excitability is unknown. We used neonatal Scn1b-null mice to model the effects of SCN1B LOF on atrial physiology in pediatric patients. Scn1b deletion resulted in altered expression of genes associated with atrial dysfunction. Scn1b-null hearts had a significant accumulation of atrial collagen, increased susceptibility to pacing induced atrial fibrillation (AF), sinoatrial node (SAN) dysfunction, and increased numbers of cholinergic neurons in ganglia that innervate the SAN. Atropine reduced the incidence of AF in null animals. Action potential duration was prolonged in null atrial myocytes, with increased late sodium current density and reduced L-type calcium current density. Scn1b LOF results in altered atrial structure and AF, demonstrating the critical role played by Scn1b in atrial physiology during early postnatal mouse development. Our results suggest that SCN1B LOF variants may significantly impact the developing pediatric heart.


Assuntos
Fibrilação Atrial , Potenciais de Ação , Animais , Fibrilação Atrial/genética , Humanos , Camundongos , Camundongos Knockout , Nó Sinoatrial/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1868(7): 166397, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35346819

RESUMO

Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2+/-) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1+/-) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2+/- mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.


Assuntos
Doenças Cardiovasculares , Telomerase , Animais , Doenças Cardiovasculares/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética
11.
Antioxid Redox Signal ; 36(7-9): 550-566, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34714114

RESUMO

Aims: NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are implicated in the pathophysiology of hypertension in chronic kidney disease patients. Genetic deletion of NOX activator 1 (Noxa1) subunit of NOX1 decreases ROS under pathophysiological conditions. Here, we investigated the role of NOXA1-dependent NOX1 activity in the pathogenesis of angiotensin II (Ang II)-induced hypertension (AIH) and possible involvement of abnormal renal function. Results: NOXA1 is present in epithelial cells of Henle's thick ascending limb and distal nephron. Telemetry showed lower basal systolic blood pressure (BP) in Noxa1-/-versus wild-type mice. Ang II infusion for 1 and 14 days increased NOXA1/NOX1 expression and ROS in kidney of male but not female wild-type mice. Mean BP increased 30 mmHg in wild-type males, with smaller increases in Noxa1-deficient males and wild-type or Noxa1-/- females. In response to an acute salt load, Na+ excretion was similar in wild-type and Noxa1-/- mice before and 14 days after Ang II infusion. However, Na+ excretion was delayed after 1-2 days of Ang II in male wild-type versus Noxa1-/- mice. Ang II increased epithelial Na+ channel (ENaC) levels and activation in the collecting duct principal epithelial cells of wild-type but not Noxa1-/- mice. Aldosterone induced ROS levels and Noxa1 and Scnn1a expression and ENaC activity in a mouse renal epithelial cell line, responses abolished by Noxa1 small-interfering RNA. Innovation and Conclusion: Ang II activation of renal NOXA1/NOX1-dependent ROS enhances tubular ENaC expression and Na+ reabsorption, leading to increased BP. Attenuation of AIH in females is attributed to weaker NOXA1/NOX1-dependent ROS signaling and efficient natriuresis. Antioxid. Redox Signal. 36, 550-566.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Angiotensina II , Canais Epiteliais de Sódio , Hipertensão , NADPH Oxidase 1 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/farmacologia , Animais , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Rim/metabolismo , Masculino , Camundongos , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , Sódio/metabolismo
12.
Redox Biol ; 26: 101288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31419754

RESUMO

Aging is characterized by increased aortic stiffness, an early, independent predictor and cause of cardiovascular disease. Oxidative stress from excess reactive oxygen species (ROS) production increases with age. Mitochondria and NADPH oxidases (NOXs) are two major sources of ROS in cardiovascular system. We showed previously that increased mitochondrial ROS levels over a lifetime induce aortic stiffening in a mouse oxidative stress model. Also, NADPH oxidase 4 (NOX4) expression and ROS levels increase with age in aortas, aortic vascular smooth muscle cells (VSMCs) and mitochondria, and are correlated with age-associated aortic stiffness in hypercholesterolemic mice. The present study investigated whether young mice (4 months-old) with increased mitochondrial NOX4 levels recapitulate vascular aging and age-associated aortic stiffness. We generated transgenic mice with low (Nox4TG605; 2.1-fold higher) and high (Nox4TG618; 4.9-fold higher) mitochondrial NOX4 expression. Young Nox4TG618 mice showed significant increase in aortic stiffness and decrease in phenylephrine-induced aortic contraction, but not Nox4TG605 mice. Increased mitochondrial oxidative stress increased intrinsic VSMC stiffness, induced aortic extracellular matrix remodeling and fibrosis, a leftward shift in stress-strain curves, decreased volume compliance and focal adhesion turnover in Nox4TG618 mice. Nox4TG618 VSMCs phenocopied other features of vascular aging such as increased DNA damage, increased premature and replicative senescence and apoptosis, increased proinflammatory protein expression and decreased respiration. Aortic stiffening in young Nox4TG618 mice was significantly blunted with mitochondrial-targeted catalase overexpression. This demonstration of the role of mitochondrial oxidative stress in aortic stiffness will galvanize search for new mitochondrial-targeted therapeutics for treatment of age-associated vascular dysfunction.


Assuntos
Aorta/metabolismo , Genes Mitocondriais , NADPH Oxidase 4/genética , Rigidez Vascular/genética , Fatores Etários , Animais , Aorta/fisiopatologia , Senescência Celular/genética , Matriz Extracelular/metabolismo , Expressão Gênica , Estudos de Associação Genética , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Vasculite/genética , Vasculite/metabolismo , Vasculite/patologia
13.
Redox Biol ; 21: 101063, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30576919

RESUMO

Increased reactive oxygen species (ROS) production and inflammation are key factors in the pathogenesis of atherosclerosis. We previously reported that NOX activator 1 (NOXA1) is the critical functional homolog of p67phox for NADPH oxidase activation in mouse vascular smooth muscle cells (VSMC). Here we investigated the effects of systemic and SMC-specific deletion of Noxa1 on VSMC phenotype during atherogenesis in mice. Neointimal hyperplasia following endovascular injury was lower in Noxa1-deficient mice versus the wild-type following endovascular injury. Noxa1 deletion in Apoe-/- or Ldlr-/- mice fed a Western diet showed 50% reduction in vascular ROS and 30% reduction in aortic atherosclerotic lesion area and aortic sinus lesion volume (P < 0.01). SMC-specific deletion of Noxa1 in Apoe-/- mice (Noxa1SMC-/-/Apoe-/-) similarly decreased vascular ROS levels and atherosclerotic lesion size. TNFα-induced ROS generation, proliferation and migration were significantly attenuated in Noxa1-deficient versus wild-type VSMC. Immunofluorescence analysis of atherosclerotic lesions showed a significant decrease in cells positive for CD68 and myosin11 (22% versus 9%) and Mac3 and α-actin (17% versus 5%) in the Noxa1SMC-/-/Apoe-/- versus Apoe-/- mice. The expression of transcription factor KLF4, a modulator of VSMC phenotype, and its downstream targets - VCAM1, CCL2, and MMP2 - were significantly reduced in the lesions of Noxa1SMC-/-/Apoe-/- versus Apoe-/- mice as well as in oxidized phospholipids treated Noxa1SMC-/- versus wild-type VSMC. Our data support an important role for NOXA1-dependent NADPH oxidase activity in VSMC plasticity during restenosis and atherosclerosis, augmenting VSMC proliferation and migration and KLF4-mediated transition to macrophage-like cells, plaque inflammation, and expansion.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , NADPH Oxidases/metabolismo , Oxirredução , Proteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Ativação Enzimática , Deleção de Genes , Loci Gênicos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos/genética , Fenótipo , Proteínas/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/deficiência , Fator de Necrose Tumoral alfa/metabolismo
14.
Antioxid Redox Signal ; 31(1): 39-58, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30450923

RESUMO

Aims: Oxidative stress is implicated in cardiomyocyte cell death and cardiac remodeling in the failing heart. The role of NADPH oxidase 4 (NOX4) in cardiac adaptation to pressure overload is controversial, but its function in myocardial ischemic stress has not been thoroughly elucidated. This study examined the function of NOX4 in the pathogenesis of ischemic heart failure, utilizing mouse models, cell culture, and human heart samples. Results:Nox4-/- mice showed a protective phenotype in response to permanent left anterior descending coronary artery ligation with smaller infarction area, lower cardiomyocyte cross-sectional area, higher capillary density, and less cell death versus wild-type (WT) mice. Nox4-/- mice had lower activity of soluble epoxide hydrolase (sEH), a potent regulator of inflammation. Nox4-/- mice also showed a 50% reduction in the number of infiltrating CD68+ macrophages in the peri-infarct zone versus WT mice. Adenoviral overexpression of NOX4 in cardiomyoblast cells increased sEH expression and activity and CCL4 and CCL5 levels; inhibition of sEH activity in NOX4 overexpressing cells attenuated the cytokine levels. Human hearts with ischemic cardiomyopathy showed adverse cardiac remodeling, increased NOX4 and sEH protein expression and CCL4 and CCL5 levels compared with control nonfailing hearts. Innovation and Conclusion: These data from the Nox4-/- mouse model and human heart tissues show for the first time that oxidative stress from increased NOX4 expression has a functional role in ischemic heart failure. One mechanism by which NOX4 contributes to ischemic heart failure is by increasing inflammatory cytokine production via enhanced sEH activity.


Assuntos
Epóxido Hidrolases/metabolismo , Insuficiência Cardíaca/metabolismo , Isquemia Miocárdica/metabolismo , NADPH Oxidase 4/metabolismo , Animais , Linhagem Celular , Quimiocina CCL4/metabolismo , Quimiocina CCL5/metabolismo , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Insuficiência Cardíaca/genética , Humanos , Camundongos , Isquemia Miocárdica/genética , NADPH Oxidase 4/genética , Ratos , Regulação para Cima
15.
J Toxicol Environ Health A ; 81(5): 106-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29279024

RESUMO

Studies have linked exposure to ultrafine particulate matter (PM) and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism underlying observed adverse vascular effects. Advanced age is one factor known to decrease antioxidant defenses and confer susceptibility to the detrimental vascular effects seen following PM exposure. The present study was designed to investigate the vasomotor responses following ultrafine PM exposure in wild type (WT) and superoxide dismutase 2-deficient (SOD2+/-) mice that possess decreased antioxidant defense. Thoracic aortic rings isolated from young and aged WT and SOD2+/- mice were exposed to ultrafine PM in a tissue bath system. Aortic rings were then constricted with increasing concentrations of phenylephrine, followed by relaxation with rising amounts of nitroglycerin (NTG). Data demonstrated that ultrafine PM decreased the relaxation response in both young WT and young SOD2+/- mouse aortas, and relaxation was significantly reduced in young SOD2+/- compared to WT mice. Ultrafine PM significantly diminished the NTG-induced relaxation response in aged compared to young mouse aortas. After ultrafine PM exposure, the relaxation response did not differ markedly between aged WT and aged SOD2+/- mice. Data demonstrated that the greater vascular effect in aortic rings in aged mice ex vivo after ultrafine PM exposure may be attributed to ultrafine PM-induced oxidative stress and loss of antioxidant defenses in aged vascular tissue. Consistent with this conclusion is the attenuation of NTG-induced relaxation response in young SOD2+/- mice. ABBREVIATIONS: H2O2: hydrogen peroxide; NTG: nitroglycerin; PAH: polycyclic aromatic hydrocarbons; PE: l-phenylephrine; PM: particulate matter; ROS: reactive oxygen species; SOD2: superoxide dismutase 2 deficient; WT: wild type.


Assuntos
Doenças da Aorta/metabolismo , Material Particulado/toxicidade , Sistema Vasomotor/fisiologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Aorta/metabolismo , Aorta/fisiopatologia , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/genética , Doenças da Aorta/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Superóxido Dismutase-1/deficiência , Superóxido Dismutase-1/metabolismo , Sistema Vasomotor/efeitos dos fármacos
16.
J Am Heart Assoc ; 6(11)2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079564

RESUMO

BACKGROUND: Atherosclerosis progression during aging culminates in the development of vulnerable plaques, which may increase the risk of cardiovascular events. Increased generation and/or decreased scavenging of reactive oxygen species in the vascular wall are major contributors to atherogenesis. We previously showed that superoxide dismutase 2 deficiency increased vascular oxidative stress and reduced aortic compliance in aged wild-type mice and that young Apoe-/-/Sod2+/- had increased mitochondrial DNA damage and atherosclerosis versus young Apoe-/- mice. Here we investigated the effects of superoxide dismutase 2 deficiency on atherosclerosis progression and plaque morphology in middle-aged Apoe-/- mice. METHODS AND RESULTS: Compared with Apoe-/-, middle-aged Apoe-/-/Sod2+/- mice had increased vascular wall reactive oxygen species (P<0.05) and higher atherosclerotic lesion area (P<0.001). The atherosclerotic plaques in middle-aged Apoe-/-/Sod2+/- mice had an increased necrotic core with higher inflammatory cell infiltration, a thinned fibrous cap with depleted smooth muscle content, and intraplaque hemorrhage. In addition, the plaque shoulder area had higher levels of calpain-2, caspase-3, and matrix metalloproteinase-2 in intimal smooth muscle cells and depleted fibrous cap collagen. Targeting mitochondrial reactive oxygen species with MitoTEMPO attenuated features of atherosclerotic plaque vulnerability in middle-aged Apoe-/-/Sod2+/- mice by lowering expression of calpain-2, caspase-3, and matrix metalloproteinase-2 and decreasing smooth muscle cell apoptosis and matrix degradation. CONCLUSIONS: Enhanced mitochondrial oxidative stress under hyperlipidemic conditions in aging induces plaque instability, in part by increasing smooth muscle cell apoptosis, necrotic core expansion, and matrix degradation. Targeting mitochondrial reactive oxygen species or its effectors may be a viable therapeutic strategy to prevent aging-associated and oxidative stress-related atherosclerosis complications.


Assuntos
Envelhecimento/metabolismo , Doenças da Aorta/enzimologia , Aterosclerose/enzimologia , Hiperlipidemias/enzimologia , Músculo Liso Vascular/enzimologia , Placa Aterosclerótica , Superóxido Dismutase/deficiência , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Dano ao DNA , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Predisposição Genética para Doença , Hiperlipidemias/sangue , Hiperlipidemias/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/patologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Necrose , Estresse Oxidativo , Fenótipo , Proteólise , Ruptura Espontânea , Superóxido Dismutase/genética , Remodelação Vascular
17.
J Mol Cell Cardiol ; 102: 10-21, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986445

RESUMO

We recently reported that increased NADPH oxidase 4 (NOX4) expression and activity during aging results in enhanced cellular and mitochondrial oxidative stress, vascular inflammation, dysfunction, and atherosclerosis. The goal of the present study was to elucidate the molecular mechanism(s) for these effects and determine the importance of NOX4 modulation of proinflammatory gene expression in mouse vascular smooth muscle cells (VSMCs). A novel peptide-mediated siRNA transfection approach was used to inhibit Nox4 expression with minimal cellular toxicity. Using melittin-derived peptide p5RHH, we achieved significantly higher transfection efficiency (92% vs. 85% with Lipofectamine) and decreased toxicity (p<0.001 vs. Lipofectamine in MTT and p<0.0001 vs. Lipofectamine in LDH assays) in VSMCs. TGFß1 significantly upregulates Nox4 mRNA (p<0.01) and protein (p<0.01) expression in VSMCs. p5RHH-mediated Nox4 siRNA transfection greatly attenuated TGFß1-induced upregulation of Nox4 mRNA (p<0.01) and protein (p<0.0001) levels and decreased hydrogen peroxide production (p<0.0001). Expression of pro-inflammatory genes Ccl2, Ccl5, Il6, and Vcam1 was significantly upregulated in VSMCs in several settings cells isolated from aged vs. young wild-type mice, in atherosclerotic arteries of Apoe-/- mice, and atherosclerotic human carotid arteries and correlated with NOX4 expression. p5RHH-mediated Nox4 siRNA transfection significantly attenuated the expression of these pro-inflammatory genes in TGFß1-treated mouse VSMCs, with the highest degree of inhibition in the expression of Il6. p5RHH peptide-mediated knockdown of TGFß-activated kinase 1 (TAK1, also known as Map3k7), Jun, and Rela, but not Nfkb2, downregulated TGFß1-induced Nox4 expression in VSMCs. Together, these data demonstrate that increased expression and activation of NOX4, which might result from increased TGFß1 levels seen during aging, induces a proinflammatory phenotype in VSMCs, enhancing atherosclerosis.


Assuntos
Envelhecimento/genética , Aterosclerose/genética , NADPH Oxidases/genética , Vasculite/etiologia , Envelhecimento/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Sobrevivência Celular/genética , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Vasculite/metabolismo , Vasculite/patologia
19.
World J Cardiol ; 8(1): 1-23, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26839654

RESUMO

Atherosclerotic coronary artery disease (CAD) comprises a broad spectrum of clinical entities that include asymptomatic subclinical atherosclerosis and its clinical complications, such as angina pectoris, myocardial infarction (MI) and sudden cardiac death. CAD continues to be the leading cause of death in industrialized society. The long-recognized familial clustering of CAD suggests that genetics plays a central role in its development, with the heritability of CAD and MI estimated at approximately 50% to 60%. Understanding the genetic architecture of CAD and MI has proven to be difficult and costly due to the heterogeneity of clinical CAD and the underlying multi-decade complex pathophysiological processes that involve both genetic and environmental interactions. This review describes the clinical heterogeneity of CAD and MI to clarify the disease spectrum in genetic studies, provides a brief overview of the historical understanding and estimation of the heritability of CAD and MI, recounts major gene discoveries of potential causal mutations in familial CAD and MI, summarizes CAD and MI-associated genetic variants identified using candidate gene approaches and genome-wide association studies (GWAS), and summarizes the current status of the construction and validations of genetic risk scores for lifetime risk prediction and guidance for preventive strategies. Potential protective genetic factors against the development of CAD and MI are also discussed. Finally, GWAS have identified multiple genetic factors associated with an increased risk of in-stent restenosis following stent placement for obstructive CAD. This review will also address genetic factors associated with in-stent restenosis, which may ultimately guide clinical decision-making regarding revascularization strategies for patients with CAD and MI.

20.
Hamostaseologie ; 36(2): 77-88, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25649240

RESUMO

Atherosclerosis and its major complications - myocardial infarction and stroke - remain major causes of death and disability in the United States and world-wide. Indeed, with dramatic increases in obesity and diabetes mellitus, the prevalence and public health impact of cardiovascular diseases (CVD) will likely remain high. Major advances have been made in development of new therapies to reduce the incidence of atherosclerosis and CVD, in particular for treatment of hypercholesterolemia and hypertension. Oxidative stress is the common mechanistic link for many CVD risk factors. However, only recently have the tools existed to study the interface between oxidative stress and CVD in animal models. The most important source of reactive oxygen species (and hence oxidative stress) in vascular cells are the multiple forms of enzymes nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Recently published and emerging studies now clearly establish that: 1) NADPH oxidases are of critical importance in atherosclerosis and hypertension in animal models; 2) given the tissue-specific expression of key components of NADPH oxidase, it may be possible to target vascular oxidative stress for prevention of CVD.


Assuntos
Artérias/imunologia , Doenças Cardiovasculares/imunologia , Citocinas/imunologia , NADPH Oxidases/imunologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Doenças Cardiovasculares/patologia , Medicina Baseada em Evidências , Humanos , Imunidade Inata/imunologia , Fatores Imunológicos/imunologia , Metabolismo dos Lipídeos/imunologia , Modelos Imunológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA