Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180184, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230576

RESUMO

This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations. Experimental evidence showing similar features are presented from the data obtained in the E217 experiment at the FACET facility of the SLAC National Laboratory. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

2.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180173, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230577

RESUMO

Beam-driven plasma wakefield acceleration (PWFA) has demonstrated significant progress during the past two decades of research. The new Facility for Advanced Accelerator Experimental Tests (FACET) II, currently under construction, will provide 10 GeV electron beams with unprecedented parameters for the next generation of PWFA experiments. In the context of the FACET II facility, we present simulation results on expected betatron radiation and its potential application to diagnose emittance preservation and hosing instability in the upcoming PWFA experiments. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

3.
Rev Sci Instrum ; 90(3): 033503, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927775

RESUMO

A versatile set of methods for analyzing x-ray energy spectra and photon flux has been developed for laser plasma accelerator experiments driven by picosecond lasers. Forward fit provides extrapolated broad energy spectrum measurements, while Ross pair and differential average transmission analysis provide directly measured data points using a particular diagnostic. Combining these methods allows the measurement of x-ray energy spectra with improved confidence. We apply the methods to three diagnostics (filter wheel, stacked image plate spectrometer, and step wedge), each sensitive to a different region of x-ray energies (<40 keV, 35-100 keV, and 60-1000 keV, respectively), to characterize the analysis methods using laser-driven bremsstrahlung x-rays. We then apply the methods to measure three x-ray mechanisms, betatron, inverse Compton scattering, and bremsstrahlung, driven by a laser plasma accelerator. The analysis results in the measurement of x-ray energy spectra ranging from 10 keV to 1 MeV with peak flux greater than 1010 photons/keV/Sr. The combined analysis methods provide a robust tool to accurately measure broadband x-ray sources (keV to MeV) driven by laser plasma acceleration with picosecond, kilojoule-class lasers.

4.
Phys Rev Lett ; 120(12): 124802, 2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29694092

RESUMO

Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. This undesirable consequence sets a tight constraint on the alignment accuracy of the beam propagating through the channel. Direct measurements of beam misalignment-induced transverse wakefields are therefore essential for designing mitigation strategies. We present the first quantitative measurements of transverse wakefields in a hollow plasma channel, induced by an off-axis 20 GeV positron bunch, and measured with another 20 GeV lower charge trailing positron probe bunch. The measurements are largely consistent with theory.

5.
Sci Rep ; 7(1): 14180, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079817

RESUMO

High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. In these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. The results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

6.
Phys Rev Lett ; 118(13): 134801, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409970

RESUMO

We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ∼5×10^{18} W/cm^{2} are focused into plasmas with electron densities of ∼1×10^{19} cm^{-3}, they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10-20 keV, and 2D particle-in-cell simulations were used to model the acceleration and radiation of the electrons in our experimental conditions.

7.
Phys Rev Lett ; 118(6): 064801, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234524

RESUMO

We show the first experimental demonstration that electrons being accelerated in a laser wakefield accelerator operating in the forced or blowout regimes gain significant energy from both the direct laser acceleration (DLA) and the laser wakefield acceleration mechanisms. Supporting full-scale 3D particle-in-cell simulations elucidate the role of the DLA of electrons in a laser wakefield accelerator when ionization injection of electrons is employed. An explanation is given for how electrons can maintain the DLA resonance condition in a laser wakefield accelerator despite the evolving properties of both the drive laser and the electrons. The produced electron beams exhibit characteristic features that are indicative of DLA as an additional acceleration mechanism.

8.
Nat Commun ; 7: 12483, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27527569

RESUMO

The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m(-1) to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.

9.
Nat Commun ; 7: 11898, 2016 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-27312720

RESUMO

Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. Here we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by up to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ∼150 GV m(-1), over ∼20 cm. The results open new possibilities for the design of particle beam drivers and plasma sources.

10.
Phys Rev Lett ; 115(5): 055004, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274427

RESUMO

Ultrarelativistic-energy electron ring structures have been observed from laser-wakefield acceleration experiments in the blowout regime. These electron rings had 170-280 MeV energies with 5%-25% energy spread and ∼10 pC of charge and were observed over a range of plasma densities and compositions. Three-dimensional particle-in-cell simulations show that laser intensity enhancement in the wake leads to sheath splitting and the formation of a hollow toroidal pocket in the electron density around the wake behind the first wake period. If the laser propagates over a distance greater than the ideal dephasing length, some of the dephasing electrons in the second period can become trapped within the pocket and form an ultrarelativistic electron ring that propagates in free space over a meter-scale distance upon exiting the plasma. Such a structure acts as a relativistic potential well, which has applications for accelerating positively charged particles such as positrons.

11.
Nature ; 524(7566): 442-5, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310764

RESUMO

Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.

12.
Nature ; 515(7525): 92-5, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373678

RESUMO

High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.

13.
Phys Rev Lett ; 112(2): 025001, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484020

RESUMO

We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43 GV/m to a strongly loaded value of 26 GV/m.

14.
Phys Rev Lett ; 111(23): 235004, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476282

RESUMO

We present the first measurements of the angular dependence of the betatron x-ray spectrum produced by electrons inside the cavity of a laser-wakefield accelerator. Electrons accelerated up to 300 MeV energies produce a beam of broadband, forward-directed betatron x-ray radiation extending up to 80 keV. The angular resolved spectrum from an image plate-based spectrometer with differential filtering provides data in a single laser shot. The simultaneous spectral and spatial x-ray analysis allows for a three-dimensional reconstruction of electron trajectories with micrometer resolution, and we find that the angular dependence of the x-ray spectrum is showing strong evidence of anisotropic electron trajectories.

15.
Phys Rev Lett ; 107(4): 045001, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21867013

RESUMO

Laser wakefield acceleration of electrons holds great promise for producing ultracompact stages of GeV scale, high-quality electron beams for applications such as x-ray free electron lasers and high-energy colliders. Ultrahigh intensity laser pulses can be self-guided by relativistic plasma waves (the wake) over tens of vacuum diffraction lengths, to give >1 GeV energy in centimeter-scale low density plasmas using ionization-induced injection to inject charge into the wake even at low densities. By restricting electron injection to a distinct short region, the injector stage, energetic electron beams (of the order of 100 MeV) with a relatively large energy spread are generated. Some of these electrons are then further accelerated by a second, longer accelerator stage, which increases their energy to ∼0.5 GeV while reducing the relative energy spread to <5% FWHM.

16.
Phys Rev Lett ; 105(10): 105003, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20867526

RESUMO

The concepts of matched-beam, self-guided laser propagation and ionization-induced injection have been combined to accelerate electrons up to 1.45 GeV energy in a laser wakefield accelerator. From the spatial and spectral content of the laser light exiting the plasma, we infer that the 60 fs, 110 TW laser pulse is guided and excites a wake over the entire 1.3 cm length of the gas cell at densities below 1.5 × 10(18) cm(-3). High-energy electrons are observed only when small (3%) amounts of CO2 gas are added to the He gas. Computer simulations confirm that it is the K-shell electrons of oxygen that are ionized and injected into the wake and accelerated to beyond 1 GeV energy.

17.
Phys Rev Lett ; 104(2): 025003, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20366604

RESUMO

A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

18.
Phys Rev Lett ; 102(17): 175003, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19518790

RESUMO

The self-guiding of relativistically intense but ultrashort laser pulses has been experimentally investigated as a function of laser power, plasma density, and plasma length in the blowout regime. The extent of self-guiding, observed by imaging the plasma exit, is shown to be limited by nonlinear pump depletion with observed self-guiding of over tens of Rayleigh lengths. Spectrally resolved images of the plasma exit show evidence consistent with self-guiding in the plasma wake. Minimal losses of the self-guided pulse resulted when the initial spot size was matched to the blowout radius.

19.
Phys Rev Lett ; 103(21): 215006, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20366048

RESUMO

A laser wakefield acceleration study has been performed in the matched, self-guided, blowout regime producing 720 +/- 50 MeV quasimonoenergetic electrons with a divergence Deltatheta_{FWHM} of 2.85 +/- 0.15 mrad using a 10 J, 60 fs 0.8 microm laser. While maintaining a nearly constant plasma density (3 x 10{18} cm{-3}), the energy gain increased from 75 to 720 MeV when the plasma length was increased from 3 to 8 mm. Absolute charge measurements indicate that self-injection of electrons occurs when the laser power P exceeds 3 times the critical power P{cr} for relativistic self-focusing and saturates around 100 pC for P/P{cr} > 5. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

20.
Phys Rev Lett ; 98(8): 084801, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17359103

RESUMO

The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA