Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9749, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328577

RESUMO

The Indian rock pythons (Python molurus) are classified as a near-threatened snake species by the International Union for the Conservation of Nature and Natural Resources (IUCN); they are native to the Indian subcontinent and have experienced population declines caused primarily by poaching and habitat loss. We hand-captured the 14 rock pythons from villages, agricultural lands, and core forests to examine the species' home ranges. We later released/translocated them in different kilometer ranges at the Tiger Reserves. From December 2018 to December 2020, we obtained 401 radio-telemetry locations, with an average tracking duration of (444 ± 212 days), and a mean of 29 ± SD 16 data points per individual. We quantified home ranges and measured morphometric and ecological factors (sex, body size, and location) associated with intraspecific differences in home range size. We analyzed the home ranges of rock pythons using Auto correlated Kernel Density Estimates (AKDE). AKDEs can account for the auto-correlated nature of animal movement data and mitigate against biases stemming from inconsistent tracking time lags. Home range size varied from 1.4 ha to 8.1 km2 and averaged 4.2 km2. Differences in home range sizes could not be connected to body mass. Initial indications suggest that rock python home ranges are larger than other pythons.


Assuntos
Boidae , Animais , Comportamento de Retorno ao Território Vital , Índia , Ecossistema , Espécies em Perigo de Extinção
2.
Sci Rep ; 12(1): 7139, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504946

RESUMO

Animal movement can impact human-wildlife conflict by influencing encounter and detection rates. We assess the movement and space use of the highly venomous and medically important Malayan krait (Bungarus candidus) on a suburban university campus. We radio-tracked 14 kraits for an average of 114 days (min: 19, max: 218), during which we located individuals an average of 106 times (min: 21, max: 229) each. Most individuals displayed some level of attraction to buildings (n = 10) and natural areas (n = 12); we identified a similar unambiguous pattern of attraction to buildings and natural areas at the population level (of our sample). Snakes remained in shelter sites for long durations (max: 94 days) and revisited sites on average every 15.45 days. Over 50% of locations were within human settlements and 37.1% were associated with buildings. We found generally seasonal patterns of activity, with higher activity in wet seasons, and lower activity in the hot season. These results show frequent proximity between Malayan kraits and humans at the university; thereby, suggesting a near constant potential for human-wildlife conflict. Despite the fact that no snakebites from this species occurred at the university during our study period, substantial education and awareness training should be considered to ensure continued coexistence on campus.


Assuntos
Bungarus , Mordeduras de Serpentes , Animais , Humanos , Mordeduras de Serpentes/epidemiologia , Serpentes
3.
Ecol Evol ; 12(3): e8691, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342558

RESUMO

Global road networks continue to expand, and the wildlife responses to these landscape-level changes need to be understood to advise long-term management decisions. Roads have high mortality risk to snakes because snakes typically move slowly and can be intentionally targeted by drivers.We investigated how radio-tracked King Cobras (Ophiophagus hannah) traverse a major highway in northeast Thailand, and if reproductive cycles were associated with road hazards.We surveyed a 15.3 km stretch of Highway 304 to determine if there were any locations where snakes could safely move across the road (e.g., culverts and bridges). We used recurse analyses to detect possible road-crossing events, and used dynamic Brownian Bridge Movement Models (dBBMMs) to show movement pathways association with possible unintentional crossing structures. We further used Integrated Step Selection Functions (ISSF) to assess seasonal differences in avoidance of major roads for adult King Cobras in relation to reproductive state.We discovered 32 unintentional wildlife crossing locations capable of facilitating King Cobra movement across the highway. While our dBBMMs broadly revealed underpasses as possible crossing points, they failed to identify specific underpasses used by telemetered individuals; however, the tracking locations pre- and post-crossing and photographs provided strong evidence of underpass use. Our ISSF suggested a lower avoidance of roads during the breeding season, although the results were inconclusive. With the high volume of traffic, large size of King Cobras, and a 98.8% success rate of crossing the road in our study (nine individuals: 84 crossing attempts with one fatality), we strongly suspect that individuals are using the unintentional crossing structures to safely traverse the road.Further research is needed to determine the extent of wildlife underpass use at our study site. We propose that more consistent integration of drainage culverts and bridges could help mitigate the impacts of roads on some terrestrial wildlife.

4.
Elife ; 102021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34382939

RESUMO

As the biodiversity crisis continues, we must redouble efforts to understand and curb pressures pushing species closer to extinction. One major driver is the unsustainable trade of wildlife. Trade in internationally regulated species gains the most research attention, but this only accounts for a minority of traded species and we risk failing to appreciate the scale and impacts of unregulated legal trade. Despite being legal, trade puts pressure on wild species via direct collection, introduced pathogens, and invasive species. Smaller species-rich vertebrates, such as reptiles, fish, and amphibians, may be particularly vulnerable to trading because of gaps in regulations, small distributions, and demand of novel species. Here, we combine data from five sources: online web searches in six languages, Convention on International Trade in Endangered Species (CITES) trade database, Law Enforcement Management Information System (LEMIS) trade inventory, IUCN assessments, and a recent literature review, to characterise the global trade in amphibians, and also map use by purpose including meat, pets, medicinal, and for research. We show that 1215 species are being traded (17% of amphibian species), almost three times previous recorded numbers, 345 are threatened, and 100 Data Deficient or unassessed. Traded species origin hotspots include South America, China, and Central Africa; sources indicate 42% of amphibians are taken from the wild. Newly described species can be rapidly traded (mean time lag of 6.5 years), including threatened and unassessed species. The scale and limited regulation of the amphibian trade, paired with the triptych of connected pressures (collection, pathogens, invasive species), warrants a re-examination of the wildlife trade status quo, application of the precautionary principle in regard to wildlife trade, and a renewed push to achieve global biodiversity goals.


In the last few decades, exotic pets have become much more common. In the UK in 2008, reptiles and amphibians were more popular than dogs, with over eight million in captivity. But while almost all pet cats and dogs are born and bred in captivity, exotic pets are often taken from the wild, putting species and their habitats at risk. An international trade agreement called the Convention on International Trade in Endangered Species (CITES) strives to prevent unsustainable animal trade. But to get CITES protection, species depend on data showing that wildlife trade threatens their survival. In addition, their range countries need to first propose them to be listed. For most wild animal species, there are no data on population size or population decline. In the case of amphibians, CITES regulates the trade of just 2.5% of species. This leaves the rest with no protection from overarching international trade regulations. To protect these animals, researchers need to find out which species are in trade, where they are coming from, and how many are already threatened. To address this, Hughes, Marshall and Strine combined data from five sources, including official CITES trade records, recent research and an online search for amphibian sales in six languages. The data showed evidence of trade in at least 1,215 amphibian species, representing 17% of all amphibians. The figure is three times higher than previous estimates. Of the species in trade, more than one in five is vulnerable to extinction, endangered, or critically endangered. For a further 100 of the traded species, data on population were unavailable. Moreover, analysis of the origins of traded individuals showed that around 42% came from the wild. Tropical parts of the world had the highest number of species in trade, but the data showed exchanges happening across the globe. Unsustainable wildlife trade can have devastating consequences for wild animals. It has already driven at least 21 reptile species to extinction, and data of amphibian species are unknown. To prevent further species going extinct, legal wildlife trade should follow the precautionary principle when it comes to wildlife trade. Rather than allowing people to trade a species until CITES regulates it, a blanket ban should come into force for species that have not been assessed or are threatened. Trade would be able to resume for a species only when assessments show that it would not cause major population decline, or secure, captive breeding facilities can be guaranteed.


Assuntos
Anfíbios , Animais Selvagens , Biodiversidade , África Central , Anfíbios/classificação , Anfíbios/fisiologia , Animais , Animais Selvagens/classificação , Animais Selvagens/fisiologia , China , Comércio , Bases de Dados Factuais , Espécies em Perigo de Extinção , Internacionalidade , Répteis , América do Sul , Especificidade da Espécie
5.
Sci Rep ; 11(1): 7014, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782524

RESUMO

Animal movement and resource use are tightly linked. Investigating these links to understand how animals use space and select habitats is especially relevant in areas affected by habitat fragmentation and agricultural conversion. We set out to explore the space use and habitat selection of Burmese pythons (Python bivittatus) in a heterogenous, agricultural landscape within the Sakaerat Biosphere Reserve, northeast Thailand. We used VHF telemetry to record the daily locations of seven Burmese pythons and created dynamic Brownian Bridge Movement Models to produce occurrence distributions and model movement extent and temporal patterns. To explore relationships between movement and habitat selection we used integrated step selection functions at both the individual and population level. Burmese pythons had a mean 99% occurrence distribution contour of 98.97 ha (range 9.05-285.56 ha). Furthermore, our results indicated that Burmese pythons had low mean individual motion variance, indicating infrequent moves and long periods at a single location. In general, Burmese pythons restricted movement and selected aquatic habitats but did not avoid potentially dangerous land use types like human settlements. Although our sample is small, we suggest that Burmese pythons are capitalizing on human disturbed landscapes.

6.
PLoS One ; 15(12): e0242826, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296389

RESUMO

Identifying individuals with natural markings is increasing in popularity to non-invasively support population studies. However, applying natural variation among individuals requires careful evaluation among target species, snakes for example have little validation of such methods. Here we introduce a mark-free identification method for King Cobras (Ophiophagus hannah) from the Sakaerat Biosphere Reserve, in northeast Thailand using both subcaudal scale pholidosis (scale arrangement and number) and unique ventral body markings to distinguish individuals. This project aims to evaluate the impact of observer error on individual identification. Observers of varying expertise, will distinguish between King Cobra individuals using identifying photographs from a previous study. We will ask randomly assigned observers to distinguish individuals via: 1) subcaudal pholidosis, 2) ventral body markings, and 3) combination of both measures. Using Bayesian logistic regression, we will assess the probability observers correctly distinguish individuals. Based on exploratory observations, we hypothesise that there will be a high probability of correct identifications using subcaudal pholidosis and ventral body markings. We aim to stimulate other studies implementing identification techniques for scrutinous assessment of such methods, in order to avoid subsequent errors during long-term population studies.


Assuntos
Comportamento Animal , Ophiophagus hannah , Fotografação , Animais , Variações Dependentes do Observador , Ophiophagus hannah/classificação , Tailândia
7.
Mov Ecol ; 8: 43, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133609

RESUMO

BACKGROUND: Animal movement expressed through home ranges or space-use can offer insights into spatial and habitat requirements. However, different classes of estimation methods are currently instinctively applied to answer home range, space-use or movement-based research questions regardless of their widely varying outputs, directly impacting conclusions. Recent technological advances in animal tracking (GPS and satellite tags), have enabled new methods to quantify animal space-use and movement pathways, but so far have primarily targeted mammal and avian species. METHODS: Most reptile spatial ecology studies only make use of two older home range estimation methods: Minimum Convex Polygons (MCP) and Kernel Density Estimators (KDE), particularly with the Least Squares Cross Validation (LSCV) and reference (h ref ) bandwidth selection algorithms. These methods are frequently applied to answer space-use and movement-based questions. Reptile movement patterns are unique (e.g., low movement frequency, long stop-over periods), prompting investigation into whether newer movement-based methods -such as dynamic Brownian Bridge Movement Models (dBBMMs)- apply to Very High Frequency (VHF) radio-telemetry tracking data. We simulated movement data for three archetypical reptile species: a highly mobile active hunter, an ambush predator with long-distance moves and long-term sheltering periods, and an ambush predator with short-distance moves and short-term sheltering periods. We compared traditionally used estimators, MCP and KDE, with dBBMMs, across eight feasible VHF field sampling regimes for reptiles, varying from one data point every four daylight hours, to once per month. RESULTS: Although originally designed for GPS tracking studies, dBBMMs outperformed MCPs and KDE h ref across all tracking regimes in accurately revealing movement pathways, with only KDE LSCV performing comparably at some higher frequency sampling regimes. However, the LSCV algorithm failed to converge with these high-frequency regimes due to high site fidelity, and was unstable across sampling regimes, making its use problematic for species exhibiting long-term sheltering behaviours. We found that dBBMMs minimized the effect of individual variation, maintained low error rates balanced between omission (false negative) and commission (false positive), and performed comparatively well even under low frequency sampling regimes (e.g., once a month). CONCLUSIONS: We recommend dBBMMs as a valuable alternative to MCP and KDE methods for reptile VHF telemetry data, for research questions associated with space-use and movement behaviours within the study period: they work under contemporary tracking protocols and provide more stable estimates. We demonstrate for the first time that dBBMMs can be applied confidently to low-resolution tracking data, while improving comparisons across regimes, individuals, and species. SUPPLEMENTARY INFORMATION: Supplementary information accompanies this paper at 10.1186/s40462-020-00229-3.

8.
Mov Ecol ; 8: 33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774861

RESUMO

BACKGROUND: Studying animal movement provides insights into how animals react to land-use changes. As agriculture expands, we can use animal movement to examine how animals change their behaviour in response. Recent reviews show a tendency for mammalian species to reduce movements in response to increased human landscape modification, but reptile movements have not been as extensively studied. METHODS: We examined movements of a large reptilian predator, the King Cobra (Ophiophagus hannah), in Northeast Thailand. We used a consistent regime of radio telemetry tracking to document movements across protected forest and adjacent agricultural areas. Using dynamic Brownian Bridge Movement Model derived motion variance, Integrated Step-Selection Functions, and metrics of site reuse, we examined how King Cobra movements changed in agricultural areas. RESULTS: Motion variance values indicated that King Cobra movements increased in forested areas and tended to decrease in agricultural areas. Our Integrated Step-Selection Functions revealed that when moving in agricultural areas King Cobras restricted their movements to remain within vegetated semi-natural areas, often located along the banks of irrigation canals. Site reuse metrics of residency time and number of revisits appeared unaffected by distance to landscape features (forests, semi-natural areas, settlements, water bodies, and roads). Neither motion variance nor reuse metrics were consistently affected by the presence of threatening landscape features (e.g. roads, human settlements), suggesting that King Cobras will remain in close proximity to threats, provided habitat patches are available. CONCLUSIONS: Although King Cobras displayed individual heterogeneity in their response to agricultural landscapes, the overall trend suggested reduced movements when faced with fragmented habitat patches embedded in an otherwise inhospitable land-use matrix. Movement reductions are consistent with findings for mammals and forest specialist species.

9.
Zootaxa ; 4896(2): zootaxa.4896.2.6, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33756866

RESUMO

No central online repository exists for the collection of animal images; hence it remains unclear how extensively species have been illustrated in the published literature or online. Here we compiled a list of more than 8000 reptile species (out of 11,341) that have photos in one of six popular online repositories, namely iNaturalist (6,349 species), the Reptile Database (5,144), Flickr (4,386), CalPhotos (3,071), Wikimedia (2,952), and Herpmapper (2,571). These sites have compiled over one million reptile photos, with some species represented by tens of thousands of images. Despite the number of images, many species have only one or a few images. This suggests that a considerable fraction of morphological and geographic variation is under documented or difficult to access. We highlight prominent gaps in amphisbaenians, lizards, and snakes, with geographic hotspots for species without images in Central Africa, Pacific Islands, and the Andes Mountains. We present a list of ~3,000 species without photos in any of the six databases and ask the community to fill the gaps by depositing images on one of these sites (preferably with minimal copyright restrictions).


Assuntos
Lagartos , Serpentes , Animais
11.
Curr Biol ; 28(11): R654-R655, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29870701

RESUMO

Invasive species are a key factor contributing to the global decline of biodiversity, and understanding the underlying mechanisms is crucial to mitigate detrimental effects [1]. One such mechanism is the introduction of invasive species with defensive strategies, such as novel toxins, that can disrupt native predator communities [2]. Disruption of such communities can produce trophic cascades, impacting a diverse array of taxa [2]. Madagascar, a globally significant biodiversity hotspot, has recently experienced the introduction of a toxic bufonid amphibian, the Asian common toad (Duttaphrynus melanostictus) [3]. Since its invasion, the toad population has expanded rapidly, making control efforts problematic and eradication extremely difficult [4]. Previous cases of bufonid introductions, such as the ongoing spread of the cane toad (Rhinella marina) in Australia, have resulted in the decimation of many indigenous species [2], prompting fears that Madagascar may be similarly impacted [4]. Here we show that these fears are warranted: we demonstrate that many Malagasy vertebrates are likely to be susceptible to the toxins of this invasive toad.


Assuntos
Bufonidae , Cadeia Alimentar , Espécies Introduzidas , Toxinas Biológicas/toxicidade , Vertebrados/fisiologia , Animais , Vertebrados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA