Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PeerJ ; 9: e12608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34966597

RESUMO

Knowledge of the factors shaping the foraging behaviour of species is central to understanding their ecosystem role and predicting their response to environmental variability. To maximise survival and reproduction, foraging strategies must balance the costs and benefits related to energy needed to pursue, manipulate, and consume prey with the nutritional reward obtained. While such information is vital for understanding how changes in prey assemblages may affect predators, determining these components is inherently difficult in cryptic predators. The present study used animal-borne video data loggers to investigate the costs and benefits related to different prey types for female Australian fur seals (Arctocephalus pusillus doriferus), a primarily benthic foraging species in the low productivity Bass Strait, south-eastern Australia. A total of 1,263 prey captures, resulting from 2,027 prey detections, were observed in 84.5 h of video recordings from 23 individuals. Substantial differences in prey pursuit and handling times, gross energy gain and total energy expenditure were observed between prey types. Importantly, the profitability of prey was not significantly different between prey types, with the exception of elasmobranchs. This study highlights the benefit of animal-borne video data loggers for understanding the factors that influence foraging decisions in predators. Further studies incorporating search times for different prey types would further elucidate how profitability differs with prey type.

2.
Sci Rep ; 6: 28015, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305858

RESUMO

Ingestion of artificial debris is considered as a significant stress for wildlife including sea turtles. To investigate how turtles react to artificial debris under natural conditions, we deployed animal-borne video cameras on loggerhead and green turtles in addition to feces and gut contents analyses from 2007 to 2015. Frequency of occurrences of artificial debris in feces and gut contents collected from loggerhead turtles were 35.7% (10/28) and 84.6% (11/13), respectively. Artificial debris appeared in all green turtles in feces (25/25) and gut contents (10/10), and green turtles ingested more debris (feces; 15.8 ± 33.4 g, gut; 39.8 ± 51.2 g) than loggerhead turtles (feces; 1.6 ± 3.7 g, gut; 9.7 ± 15.0 g). In the video records (60 and 52.5 hours from 10 loggerhead and 6 green turtles, respectively), turtles encountered 46 artificial debris and ingested 23 of them. The encounter-ingestion ratio of artificial debris in green turtles (61.8%) was significantly higher than that in loggerhead turtles (16.7%). Loggerhead turtles frequently fed on gelatinous prey (78/84), however, green turtles mainly fed marine algae (156/210), and partly consumed gelatinous prey (10/210). Turtles seemed to confuse solo drifting debris with their diet, and omnivorous green turtles were more attracted by artificial debris.


Assuntos
Fezes/química , Comportamento Alimentar/fisiologia , Comportamento Alimentar/psicologia , Tartarugas/fisiologia , Resíduos , Poluentes da Água , Animais , Ingestão de Alimentos
3.
Oecologia ; 180(3): 657-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26233674

RESUMO

Estimating the degree of individual specialisation is likely to be sensitive to the methods used, as they record individuals' resource use over different time-periods. We combined animal-borne video cameras, GPS/TDR loggers and stable isotope values of plasma, red cells and sub-sampled whiskers to investigate individual foraging specialisation in female Australian fur seals (Arctocephalus pusillus doriferus) over various timescales. Combining these methods enabled us to (1) provide quantitative information on individuals' diet, allowing the identification of prey, (2) infer the temporal consistency of individual specialisation, and (3) assess how different methods and timescales affect our estimation of the degree of specialisation. Short-term inter-individual variation in diet was observed in the video data (mean pairwise overlap = 0.60), with the sampled population being composed of both generalist and specialist individuals (nested network). However, the brevity of the temporal window is likely to artificially increase the level of specialisation by not recording the entire diet of seals. Indeed, the correlation in isotopic values was tighter between the red cells and whiskers (mid- to long-term foraging ecology) than between plasma and red cells (short- to mid-term) (R(2) = 0.93-0.73 vs. 0.55-0.41). δ(13)C and δ(15)N values of whiskers confirmed the temporal consistency of individual specialisation. Variation in isotopic niche was consistent across seasons and years, indicating long-term habitat (WIC/TNW = 0.28) and dietary (WIC/TNW = 0.39) specialisation. The results also highlight time-averaging issues (under-estimation of the degree of specialisation) when calculating individual specialisation indices over long time-periods, so that no single timescale may provide a complete and accurate picture, emphasising the benefits of using complementary methods.


Assuntos
Isótopos de Carbono/análise , Dieta , Comportamento Alimentar/fisiologia , Otárias/fisiologia , Isótopos de Nitrogênio/análise , Vibrissas/química , Gravação em Vídeo , Animais , Austrália , Ecossistema , Eritrócitos/química , Feminino , Estações do Ano , Fatores de Tempo
4.
PLoS One ; 10(7): e0130581, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132329

RESUMO

Human-induced changes to habitats can have deleterious effects on many species that occupy them. However, some species can adapt and even benefit from such modifications. Artificial reefs have long been used to provide habitat for invertebrate communities and promote local fish populations. With the increasing demand for energy resources within ocean systems, there has been an expansion of infrastructure in near-shore benthic environments which function as de facto artificial reefs. Little is known of their use by marine mammals. In this study, the influence of anthropogenic sea floor structures (pipelines, cable routes, wells and shipwrecks) on the foraging locations of 36 adult female Australian fur seals (Arctocephalus pusillus doriferus) was investigated. For 9 (25%) of the individuals, distance to anthropogenic sea floor structures was the most important factor in determining the location of intensive foraging activity. Whereas the influence of anthropogenic sea floor structures on foraging locations was not related to age and mass, it was positively related to flipper length/standard length (a factor which can affect manoeuvrability). A total of 26 (72%) individuals tracked with GPS were recorded spending time in the vicinity of structures (from <1% to >75% of the foraging trip duration) with pipelines and cable routes being the most frequented. No relationships were found between the amount of time spent frequenting anthropogenic structures and individual characteristics. More than a third (35%) of animals foraging near anthropogenic sea floor structures visited more than one type of structure. These results further highlight potentially beneficial ecological outcomes of marine industrial development.


Assuntos
Ambiente Controlado , Otárias/fisiologia , Animais , Comportamento Animal , Feminino , Masculino , Telemetria
5.
PLoS One ; 8(6): e66043, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776603

RESUMO

Identifying characteristics of foraging activity is fundamental to understanding an animals' lifestyle and foraging ecology. Despite its importance, monitoring the foraging activities of marine animals is difficult because direct observation is rarely possible. In this study, we use an animal-borne imaging system and three-dimensional data logger simultaneously to observe the foraging behaviour of large juvenile and adult sized loggerhead turtles (Caretta caretta) in their natural environment. Video recordings showed that the turtles foraged on gelatinous prey while swimming in mid-water (i.e., defined as epipelagic water column deeper than 1 m in this study). By linking video and 3D data, we found that mid-water foraging events share the common feature of a marked deceleration phase associated with the capture and handling of the sluggish prey. Analysis of high-resolution 3D movements during mid-water foraging events, including presumptive events extracted from 3D data using deceleration in swim speed as a proxy for foraging (detection rate = 0.67), showed that turtles swam straight toward prey in 171 events (i.e., turning point absent) but made a single turn toward the prey an average of 5.7±6.0 m before reaching the prey in 229 events (i.e., turning point present). Foraging events with a turning point tended to occur during the daytime, suggesting that turtles primarily used visual cues to locate prey. In addition, an incident of a turtle encountering a plastic bag while swimming in mid-water was recorded. The fact that the turtle's movements while approaching the plastic bag were analogous to those of a true foraging event, having a turning point and deceleration phase, also support the use of vision in mid-water foraging. Our study shows that integrated video and high-resolution 3D data analysis provides unique opportunities to understand foraging behaviours in the context of the sensory ecology involved in prey location.


Assuntos
Imageamento Tridimensional/métodos , Comportamento Predatório/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Tartarugas/fisiologia , Visão Ocular/fisiologia , Animais , Fenômenos Biomecânicos , Japão , Gravação em Vídeo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA