Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 2): 116153, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196693

RESUMO

Arsenic contamination of groundwater is becoming a major global issue as it can severely affect the safety of drinking water and human health. In this paper, 448 water samples were investigated to study the spatiotemporal distribution, source identification and human health risk of groundwater arsenic pollution in the central Yinchuan basin by applying a hydrochemical and isotopic approach. The results showed that arsenic concentrations in groundwater ranged from 0.7 µg/L to 26 µg/L with a mean of 2.19 µg/L, and 5.9% of samples were above 5 µg/L, indicating the arsenic pollution of groundwater in the study area. High arsenic groundwater was mainly distributed in the northern and eastern areas along the Yellow river. The main hydrochemistry type of high arsenic groundwater was HCO3·SO4-Na·Mg, and the dissolution of arsenic-bearing minerals in sediment, irrigation water infiltration and aquifer recharge from the Yellow river were the main sources of arsenic in groundwater. The arsenic enrichment was dominantly controlled by the TMn redox reaction and the competitive adsorption of HCO3-, and the influence of anthropogenic activities was limited. The health risk assessment suggested that the carcinogenic risk of As for children and adults greatly exceeded the acceptable risk threshold of 1E-6, displaying a high carcer risk, while the non-carcinogenic risks of As, F-, TFe, TMn and NO3- in 2019 were largely higher than the acceptable risk threshold (HQ > 1). The present study provides insight into the occurrence, hydrochemical processes and potential health risk of arsenic pollution in groundwater.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Adulto , Criança , Humanos , Arsênio/análise , Monitoramento Ambiental/métodos , Água Potável/análise , Medição de Risco , Poluentes Químicos da Água/análise , China
2.
Environ Res ; 222: 115328, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36693463

RESUMO

Soil heavy metals (HMs) contamination stemming from smelting and mining activities is becoming a global concern due to its devastating impacts on the environment and human health. In this study, 128 soil samples were investigated to assess the spatial distribution, contamination characteristics, ecological and human health risk of HMs in soils near a smelting area by using BP artificial neural network (BP-ANN) and Monte Carlo simulation. The results showed that the concentrations of all five HMs in the soil greatly exceeded the background value of study area with a basic trend: Pb > As > Cr > Cd > Hg, indicating a high pollution level. Arsenic and lead were the major pollutants in the study area with an exceedance rate of 78.95% and 28.95%, respectively. The toxic fume and dust emitted during the smelting process were identified as the major sources of HMs pollution in soil, while Cd pollution was mainly caused by agricultural activities near the study area. The probabilistic risk assessment suggested that the average HQ values of five HMs for children and adults exceeded the acceptable threshold with a trend: As > Pb > Cr > Cd > Hg. The average CR values of As, Cr and Pb for all population were greatly larger than the acceptable threshold (CR ≥ 1), indicating a high cancer risk. However, the CR values of Cd for adults and children were within the acceptable threshold (CR < 1), implying no cancer risk. The results of the present study can provide some insight into the contamination characteristics, ecological and human health risk of HMs in contaminated soils by mining and smelting activities, which can help prevent and control soil pollution and environmental risk.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Adulto , Criança , Humanos , Solo , Cádmio , Chumbo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , China
3.
Sci Total Environ ; 854: 158767, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36113806

RESUMO

Antimony (Sb) contamination in soil has become a major environmental issue due to its adverse effects on ecosystems and human health. In this paper, 1255 soil samples were analyzed to investigate the distribution, speciation, in vitro oral bioaccessibility (8 soil samples) and human health risk of Sb in contaminated soils and its impacts on groundwater. The results showed that 4.38 % of the soil samples within the depth of 0-31 m exceeded the Risk Screening Values (RSV). Sb mainly existed in the residual fraction (38.05 % ∼ 94.22 %), Fe/Mn oxides (0.01 % ∼ 31.80 %) and the organic fraction (0.32 % ∼ 21.55 %) with poor mobility. The bioaccessibility of Sb was approximately <31 %. The total concentration of Sb (TSb) in soil was the dominant factor influencing the bioaccessible concentration of Sb (SbBio). Soil physiochemical properties such as Fe, Mn, and organic matter content (OM) also affected the magnitude of SbBio. Health risk assessment based on in vitro bioaccessibility suggested that the hazard quotient (HQ) of adults was within the acceptable level (HQ < 1) for industrial scenario, while the HQ of children and adults was greater than the acceptable level (HQ ≥ 1) for residential scenario, with a higher risk to children than adults. The results of the leaching experiment involving Dilution-Attenuation Factor (DAF) model suggested that the predicted maximum concentration of Sb in groundwater was 2.40 µg/L that is lower than the acceptable standard value (5 µg/L), implying that groundwater was not contaminated by Sb in soil. The findings of this study provide some insights into the speciation, in vitro bioaccessibility and health risk of toxic trace metals in contaminated soils and the potential environmental impacts.


Assuntos
Poluentes do Solo , Oligoelementos , Criança , Humanos , Antimônio/análise , Solo/química , Ecossistema , Poluição Ambiental , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Medição de Risco
4.
Environ Res ; 214(Pt 1): 113772, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792168

RESUMO

Toxic heavy metals pollution in urban soil has become a major global issue due to its adverse effects on the environment and human health. In this paper, 26 soil samples were analyzed to assess the speciation, bioavailability and human health risk of Arsenic (As), Mercury (Hg), Lead (Pb) and Cadmium (Cd) in urban soils of a heavy industrial city in NE China by using a Monte Carlo simulation approach. The results showed that As, Hg, Pb and Cd concentrations in the soil all exceed the corresponding background value of study area. Mercury displays the highest value of geo-accumulation index (Igeo), followed by Cd, Pb and As. The pollution load index (PLI) value (>2) indicates a moderate pollution level in the study area. The chemical speciation of HMs mainly exists in residual fraction except Cd. The probabilistic health risk assessment demonstrated that the mean values of Total Carcinogenic Risk (TCR) and Hazard Index (HI) calculated with total concentration are at the unacceptable level, with a higher risk to children than adults. However, the mean values calculated with bioavailable fraction are all within the acceptable level. The mean value of TCR and HI obtained by bioavailable fraction is about 96% and 95% lower than that obtained by total concentration, respectively. Thus, this study suggested that the bioavailable fraction of HMs is a more reliable parameter for health risk assessment, while the total concentration of HMs can overestimate the true risk. The results of this study provide some insight into the speciation, bioavailability and health risks of toxic heavy metals in urban soils in those heavy industrial cities.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Arsênio/farmacocinética , Disponibilidade Biológica , Cádmio/farmacocinética , Criança , China , Monitoramento Ambiental , Humanos , Chumbo/farmacocinética , Mercúrio/farmacocinética , Metais Pesados/farmacocinética , Método de Monte Carlo , Receptores de Antígenos de Linfócitos T , Medição de Risco , Solo , Poluentes do Solo/farmacocinética
5.
Environ Geochem Health ; 43(2): 717-732, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31900825

RESUMO

The safety of groundwater has been a great concern for irrigation and drinking purposes in recent decades due to the increasing impacts of anthropogenic activities. There are several standards to evaluate the groundwater quality for different utilization purposes. In this paper, 804 samples covering the entire Ordos Basin across five provinces were used to evaluate the irrigation suitability and human health risks. The results showed that the sequence of cationic concentration was Na+ > Ca2+ > Mg2+ > K+ > NH4 +, and the anion concentration was HCO3 - > SO4 2- > Cl- > NO3 - > F- > NO2 -. For drinking purposes, TDS, Na+, SO4 2-, F-, TH and NO3 - exceed seriously the regulated standard in the study area. For irrigating purposes, 80% of the water in the study area belongs to "good water" according to the evaluation of salinity and alkalinity. Saline water which is not suitable for irrigation accounts for about 9%. High health risks of fluoride ions are mainly observed to the samples representing the western part of the study area, while the health risks of nitrates spread throughout the study area. Health risk is not only related to location, but also varies with age, and it is found that children suffer more threats than adults.


Assuntos
Agricultura , Água Subterrânea/química , Poluentes Químicos da Água/toxicidade , Adulto , Criança , China , Monitoramento Ambiental/métodos , Fluoretos/análise , Humanos , Nitratos/análise , Medição de Risco , Salinidade , Poluentes Químicos da Água/análise , Qualidade da Água/normas
6.
Ecotoxicol Environ Saf ; 164: 732-738, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30176562

RESUMO

Groundwater quality relating closely to human health has become a great concern to the whole society, especially in heavily polluted areas. Yinchuan Plain, located in the arid and semi-arid region of Northwestern China, where people rely heavily on groundwater resource. However, due to the improper groundwater exploitation and negative effect of human activities in recent years, groundwater quality in Yinchuan plain become deteriorated. For the sustainable utilization and protection of groundwater resources, health risk assessment (HRA) of phreatic water is conducted in this paper. On the basis of model recommended by EPA, triangular fuzzy number is applied to establish risk assessment model for health risk assessment of adults and children in wet and dry seasons, respectively. Results of HRA indicate that carcinogenic risk of arsenic is highest among the risk from components in phreatic water, and the highest risk from arsenic to adults and children in wet and dry season are 6.48 × 10-6a-1 and 9.56 × 10-6a-1, 1.08 × 10-5a-1 and 1.59 × 10-5a-1, respectively. This study also states that in Yinchuan Plain carcinogenic risk from drinking groundwater can be 3-4 times magnitude higher than the noncarcinogenic risk. Also it is found that the health risk to children is as 1.5-2 times as to adults, while the uncertainties of adults' health risk are higher than that of children.


Assuntos
Água Potável/química , Água Subterrânea/química , Medição de Risco , Adulto , Arsênio/análise , Criança , China , Monitoramento Ambiental , Inundações , Humanos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Controle de Qualidade , Estações do Ano , Testes de Toxicidade , Poluentes Químicos da Água/análise
7.
Environ Pollut ; 218: 879-888, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27524257

RESUMO

Insufficient understanding of the hydrogeochemistry of aquifers makes it necessary to conduct a preliminary water quality assessment in the southern region of Ordos Basin, an arid area in the world. In this paper, the major ions of groundwater have been studied aiming at evaluating the hydrogeochemical processes that probably affect the groundwater quality using 150 samples collected in 2015. The two prevalent hydrochemical facies, HCO3Mg·Na·Ca and HCO3Mg·Ca·Na type water, have been identified based on the hydrochemical analysis from Piper trilinear diagram. Compositional relations have been used to assess the origin of solutes and confirm the predominant hydrogeochemical processes responsible for the various ions in the groundwater. The results show that the ions are derived from leaching effect, evaporation and condensation, cation exchange, mixing effect and human activities. Finally groundwater quality was assessed with single factor and set pair methods, the results indicate that groundwater quality in the study region is generally poor in terms of standard of national groundwater quality. The results obtained in this study will be useful to understand the groundwater quality status for effective management and utilization of the groundwater resource.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Água Subterrânea/normas , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água/normas , China , Atividades Humanas , Humanos , Íons/análise , Movimentos da Água
8.
Environ Pollut ; 216: 340-349, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27294785

RESUMO

Ordos Basin is located in an arid and semi-arid region of northwestern China, which is the most important energy source bases in China. Salawusu Formation (Q3 s) is one of the most important aquifer systems of Ordos Basin, which is adjacent to Jurassic coalfield areas. A large-scale exploitation of Jurassic coal resources over ten years results in series of influences to the coal minerals, such as exposed to the oxidation process and dissolution into the groundwater due to the precipitation infiltration. Therefore, how these processes impact groundwater quality is of great concerns. In this paper, the descriptive statistical method, Piper trilinear diagram, ratios of major ions and canonical correspondence analysis are employed to investigate the hydrochemical evolution, determine the possible sources of pollution processes, and assess the controls on groundwater compositions using the monitored data in 2004 and 2014 (before and after large-scale coal mining). Results showed that long-term exploration of coal resources do not result in serious groundwater pollution. The hydrochemical types changed from HCO3(-)-CO3(2-) facies to SO4(2-)-Cl facies during 10 years. Groundwater hardness, nitrate and sulfate pollution were identified in 2014, which was most likely caused by agricultural activities.


Assuntos
Água Subterrânea/química , Poluentes Químicos da Água/análise , Agricultura , China , Minas de Carvão , Monitoramento Ambiental/métodos , Nitratos/análise , Nitratos/química , Sulfatos/análise , Sulfatos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA