Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 201: 772-779, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29550571

RESUMO

This work describes the construction of two novel self-luminescent bioreporter strains of the cyanobacterium Nostoc sp. PCC 7120 by fusing the promoter region of the sodA and sodB genes (encoding the superoxide dismutases MnSod and FeSod, respectively) to luxCDABE from Photorhabdus luminescens aimed at detecting pollutants that generate reactive oxygen species (ROS), particularly O2-. Bioreporters were tested against methyl viologen (MV) as the inducer of superoxide anion (O2-). Both bioreporters were specific for O2- and Limits of detection (LODs) and Maximum Permissive Concentrations (MPCs) were calculated: Nostoc sp. PCC 7120 pBG2154 (sodA) had a range of detection from 400 to 1000 pM of MV and for Nostoc sp. PCC 7120 pBG2165 (sodB) the range of detection was from 500 to 1800 pM of MV after 5 h-exposure. To further validate the bioreporters, they were tested with the emerging pollutant Triclosan which induced bioluminescence in both strains. Furthermore, the bioreporters performance was tested in two real environmental samples with different water matrix complexity, spiked with MV. Both bioreporters were induced by O2- in these environmental samples. In the case of the river water sample, the amount of bioavailable MV as calculated from the bioreporters output was similar to that nominally added. For the waste water sample, the bioavailable MV concentration detected by the bioreporters was one order of magnitude lower than nominal. These differences could be due to MV complexation with organic matter and/or co-occurring organic contaminants. These results confirm their high sensitivity to O2- and their suitability to detect oxidative stress-generating pollutants in fresh-waters.


Assuntos
Proteínas de Bactérias/química , Cianobactérias/enzimologia , Superóxido Dismutase/química , Superóxidos/análise , Poluentes Químicos da Água/análise , Proteínas de Bactérias/genética , Cianobactérias/efeitos dos fármacos , Água Doce/química , Genes Bacterianos , Limite de Detecção , Medições Luminescentes , Oxirredução , Paraquat/química , Regiões Promotoras Genéticas/genética , Superóxido Dismutase/genética
2.
Sci Rep ; 5: 17200, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26606975

RESUMO

A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks.


Assuntos
Técnicas Biossensoriais/métodos , Células/metabolismo , Pesquisa , Modelos Teóricos , Análise de Regressão , Reprodutibilidade dos Testes , Synechococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA