Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 312: 122721, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39106817

RESUMO

Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.


Assuntos
Células Matadoras Naturais , Pulmão , Nanopartículas Metálicas , Infecções por Orthomyxoviridae , Prata , Animais , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Pulmão/virologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Camundongos , Células Matadoras Naturais/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos Endogâmicos C57BL , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Feminino , Ativação Linfocitária/efeitos dos fármacos
2.
J Virol Methods ; 319: 114756, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37268046

RESUMO

Equine arteritis virus (EAV) is an Alphaarterivirus (family Arteriviridae, order Nidovirales) that frequently causes an influenza-like illness in adult horses, but can also cause the abortions in mares and death of newborn foals. Once primary infection has been established, EAV can persist in the reproductive tract of some stallions. However, the mechanisms enabling this persistence, which depends on testosterone, remain largely unknown. We aimed to establish an in vitro model of non-cytopathic EAV infection to study viral persistence. In this work, we infected several cell lines originating from the male reproductive tract of different species. EAV infection was fully cytopathic for 92BR (donkey cells) and DDT1 MF-2 (hamster cells) cells, and less cytopathic for PC-3 cells (human cells); ST cells (porcine cells) seemed to eliminate the virus; LNCaP (human cells) and GC-1 spg (murine cells) cells were not permissive to EAV infection; finally, TM3 cells (murine cells) were permissive to EAV infection without any overt cytopathic effects. Infected TM3 cells can be maintained at least 7 days in culture without any subculture. They can also be subcultured over 39 days (subculturing them at 1:2 the first time at 5 dpi and then every 2-3 days), but in this case, the percentage of infected cells remains low. Infected TM3 cells may therefore provide a new model to study the host-pathogen interactions and to help determine the mechanisms involved in EAV persistence in stallion reproductive tract.


Assuntos
Infecções por Arterivirus , Equartevirus , Doenças dos Cavalos , Cricetinae , Gravidez , Masculino , Cavalos , Animais , Humanos , Feminino , Camundongos , Suínos , Interações Hospedeiro-Patógeno , Genitália , Linhagem Celular , Infecções por Arterivirus/veterinária
3.
Am J Respir Cell Mol Biol ; 68(2): 186-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36194580

RESUMO

Eosinophils have been previously shown to be able to regulate early humoral responses during systemic vaccination. Here we investigated the role of eosinophils during pulmonary vaccination, comparing vaccine-induced responses in eosinophil-deficient (ΔdblGATA) and wild-type mice using a Th2 adjuvant. We observed that eosinophils were needed to induce a complete vaccine response, thereby eliciting specific antibody-secreting plasma cells in the regional lymph nodes and antibody secretion in the BAL at the early stage of the immune response. Reintroduction of eosinophils in the lungs of ΔdblGATA mice during the priming stage enhanced both specific IgM and IgG plasma cells but not specific IgA plasma cells. Upon vaccination, eosinophils migrated to the lungs and secreted cytokines involved in B-cell activation, which might promote antibody production. Importantly, however, the absence of eosinophils did not impair late immune responses in a prime/boost protocol because, in that setup, we uncovered a compensating mechanism involving a Th17 pathway. In conclusion, our data demonstrate for the first time a new role for eosinophils during lung mucosal vaccination, whereby they accelerate early immune responses (IgM and IgG) while regulating IgA production at the late stages.


Assuntos
Formação de Anticorpos , Eosinófilos , Camundongos , Animais , Eosinófilos/metabolismo , Pulmão/patologia , Vacinação , Imunoglobulina G , Imunoglobulina M , Imunoglobulina A/metabolismo , Camundongos Endogâmicos BALB C , Imunidade nas Mucosas
4.
Sci Rep ; 10(1): 10100, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572069

RESUMO

RNA viruses are responsible for a large variety of animal infections. Equine Arteritis Virus (EAV) is a positive single-stranded RNA virus member of the family Arteriviridae from the order Nidovirales like the Coronaviridae. EAV causes respiratory and reproductive diseases in equids. Although two vaccines are available, the vaccination coverage of the equine population is largely insufficient to prevent new EAV outbreaks around the world. In this study, we present a high-throughput in vitro assay suitable for testing candidate antiviral molecules on equine dermal cells infected by EAV. Using this assay, we identified three molecules that impair EAV infection in equine cells: the broad-spectrum antiviral and nucleoside analog ribavirin, and two compounds previously described as inhibitors of dihydroorotate dehydrogenase (DHODH), the fourth enzyme of the pyrimidine biosynthesis pathway. These molecules effectively suppressed cytopathic effects associated to EAV infection, and strongly inhibited viral replication and production of infectious particles. Since ribavirin is already approved in human and small animal, and that several DHODH inhibitors are in advanced clinical trials, our results open new perspectives for the management of EAV outbreaks.


Assuntos
Infecções por Arterivirus/tratamento farmacológico , Equartevirus/metabolismo , Ribavirina/farmacologia , Animais , Antivirais/farmacologia , Infecções por Arterivirus/veterinária , Linhagem Celular , Efeito Citopatogênico Viral/efeitos dos fármacos , Di-Hidro-Orotato Desidrogenase , Doenças dos Cavalos/virologia , Cavalos/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Purinas/antagonistas & inibidores , Purinas/biossíntese , Purinas/farmacologia , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Pirimidinas/farmacologia , RNA/farmacologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA