Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(9)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39244214

RESUMO

BACKGROUND: Immunodeficient mice engrafted with peripheral blood mononuclear cells (PBMCs) are models to study new cancer immunotherapy agents. However, this approach is associated with xenograft-versus-host disease (xGVHD), which starts early after PBMC transfer and limits the duration and interpretation of experiments. Here, we explore different approaches to overcome xGVHD and better support the development of cancer immunotherapies. METHODS: Immunodeficient NOD-scid IL2Rgnull (NSG) mice were intravenously transferred with human PBMCs and subcutaneously co-engrafted with HT29 human colon carcinoma cells. Diverse strategies to reduce xGVHD while preserving the antitumor activity of human immune cells were evaluated: (1) ex vivo immune graft modification by depleting CD4+ T cells pre-transfer using magnetic beads, (2) post-transplantation cyclophosphamide administration to eliminate proliferating xenoreactive T-cell clones and (3) using major histocompatibility complex (MHC) class I and II-deficient NSG mice: (Kb Db)null (IA)null (MHC-dKO NSG). Body weight and plasma murine alanine aminotransferase levels were measured as indicators of xGVHD and tumor size was measured every 2-3 days to monitor antitumor activity. The antitumor effects and pharmacodynamics of nivolumab plus ipilimumab and an anti-epithelial cell adhesion molecule (EpCAM)/CD3 T-cell engager (αEpCAM/CD3 bispecific antibody (BsAb)) were evaluated in the model. RESULTS: CD4+ T-cell depletion attenuates xGVHD but also abrogates the antitumor activity. Cyclophosphamide limits the antitumor response and does not substantially prevent xGVHD. In contrast, xGVHD was significantly attenuated in MHC-dKO NSG recipients, while the antitumor effect of human PBMCs was preserved. Furthermore, the administration of nivolumab plus ipilimumab caused exacerbated xGVHD in conventional NSG mice, thereby precluding the observation of their antitumor effects. Severe xGVHD did not occur in MHC-dKO NSG mice thus enabling the study of complete and durable tumor rejections. Similarly, NSG mice treated with an αEpCAM/CD3 BsAb showed complete tumor regressions, but died due to xGVHD. In contrast, MHC-dKO NSG mice on treatment with the αEpCAM/CD3 BsAb achieved complete tumor responses without severe xGVHD. A significant proportion of mice rendered tumor-free showed tumor rejection on rechallenge with HT29 cells without further treatment. Finally, tumor-infiltrating CD8+ T-cell number increase, activation and CD137 upregulation were observed on αEpCAM/CD3 BsAb treatment. CONCLUSION: Humanized MHC-dKO immunodeficient mice allow and refine the preclinical testing of immunotherapy agents for which experimentation is precluded in conventional immunodeficient mice due to severe xGVHD.


Assuntos
Inibidores de Checkpoint Imunológico , Animais , Humanos , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos SCID , Camundongos Endogâmicos NOD , Antígenos de Histocompatibilidade Classe I/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Antígenos de Histocompatibilidade Classe II/imunologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Front Immunol ; 15: 1328707, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361917

RESUMO

Salmonella enterica serovar Typhimurium expresses two type III secretion systems, T3SS1 and T3SS2, which are encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. These are essential virulent factors that secrete more than 40 effectors that are translocated into host animal cells. This study focuses on three of these effectors, SlrP, SspH1, and SspH2, which are members of the NEL family of E3 ubiquitin ligases. We compared their expression, regulation, and translocation patterns, their role in cell invasion and intracellular proliferation, their ability to interact and ubiquitinate specific host partners, and their effect on cytokine secretion. We found that transcription of the three genes encoding these effectors depends on the virulence regulator PhoP. Although the three effectors have the potential to be secreted through T3SS1 and T3SS2, the secretion of SspH1 and SspH2 is largely restricted to T3SS2 due to their expression pattern. We detected a role for these effectors in proliferation inside fibroblasts that is masked by redundancy. The generation of chimeric proteins allowed us to demonstrate that the N-terminal part of these proteins, containing the leucine-rich repeat motifs, confers specificity towards ubiquitination targets. Furthermore, the polyubiquitination patterns generated were different for each effector, with Lys48 linkages being predominant for SspH1 and SspH2. Finally, our experiments support an anti-inflammatory role for SspH1 and SspH2.


Assuntos
Salmonella typhimurium , Ubiquitina-Proteína Ligases , Animais , Salmonella typhimurium/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sorogrupo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA