Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Anal Sci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847963

RESUMO

Green leafy vegetables are essential for a balanced diet, providing vital nutrients for overall well-being. However, concerns arise due to contamination with toxic substances, such as arsenic, posing risks to food safety and human health. This study analyzes inorganic (iAs), monomethyl (MMA), and dimethyl arsenic (DMA) in specific leafy vegetables (Amaranthus tricolor L., Corchorus olitorius L., Cordia myxa L., Hibiscus sabdariffa L., Ipomoea batatas (L.) Lam., Moringa oleifera Lam., and Spinacia oleracea L.) grown in the heavily polluted Ambagarh Chouki region, Chhattisgarh, India. Concentrations of DMA, MMA, and iAs ranged from 0 to 155, 0 to 7, and 131 to 3579 mg·kg-1, respectively. The health quotient (HQ) for iAs ranged between 0.37 and 3.78, with an average value of 2.58 ± 1.08.

2.
Nat Prod Res ; : 1-7, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414225

RESUMO

This study explores the phytochemical composition of leaf extracts from Handroanthus impetiginosus (Mart.) Mattos and Luehea divaricata Mart., used in a contraceptive decoction by Mbya-Guarani women. The phytocompounds were identified by gas chro-matography-mass spectrometry, while Fourier-transform infrared spectroscopy, multi-elemental, and thermal analyses were used to characterise plant biomass. Notably, no phytoconstituent supporting the efficacy of these extracts as female contraceptives was found, except for a small amount (0.3%) of sitosterol. Conversely, L. divaricata leaves contained compounds like 1,3-dihydroxyacetone dimer, N-methyl-N-nitroso-2-propanamine, 2-methoxy-N-(2-methoxyethyl)-N-methyl-ethanamine, and 1,3,5-triazine-2,4,6-triamine, potentially exerting cytotoxic, genotoxic, and toxicogenomic effects. Due to the absence of scientific support for the claimed contraceptive efficacy and the presence of safety concerns, we propose an alternative valorisation pathway centred on the presence of phytochemicals exhibiting antimicrobial activity. This proposition is substantiated by their considerable in vitro efficacy against Botrytis cinerea.

3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256176

RESUMO

Advancements in polymer science and nanotechnology hold significant potential for addressing the increasing demands of food security, by enhancing the shelf life, barrier properties, and nutritional quality of harvested fruits and vegetables. In this context, biopolymer-based delivery systems present themselves as a promising strategy for encapsulating bioactive compounds, improving their absorption, stability, and functionality. This study provides an exploration of the synthesis, characterization, and postharvest protection applications of nanocarriers formed through the complexation of chitosan oligomers, carboxymethylcellulose, and alginate in a 2:2:1 molar ratio. This complexation process was facilitated by methacrylic anhydride and sodium tripolyphosphate as cross-linking agents. Characterization techniques employed include transmission electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, thermal analysis, and X-ray powder diffraction. The resulting hollow nanospheres, characterized by a monodisperse distribution and a mean diameter of 114 nm, exhibited efficient encapsulation of carvacrol, with a loading capacity of approximately 20%. Their suitability for phytopathogen control was assessed in vitro against three phytopathogens-Botrytis cinerea, Penicillium expansum, and Colletotrichum coccodes-revealing minimum inhibitory concentrations ranging from 23.3 to 31.3 µg·mL-1. This indicates a higher activity compared to non-encapsulated conventional fungicides. In ex situ tests for tomato (cv. 'Daniela') protection, higher doses (50-100 µg·mL-1, depending on the pathogen) were necessary to achieve high protection. Nevertheless, these doses remained practical for real-world applicability. The advantages of safety, coupled with the potential for a multi-target mode of action, further enhance the appeal of these nanocarriers.


Assuntos
Quitosana , Cimenos , Solanum lycopersicum , Carboximetilcelulose Sódica , Alginatos
4.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257384

RESUMO

In recent years, nutmeg (Myristica fragans Houtt.) has attracted considerable attention in the field of phytochemistry due to its diverse array of bioactive compounds. However, the potential application of nutmeg as a biorational for crop protection has been insufficiently explored. This study investigated the constituents of a nutmeg hydroethanolic extract via gas chromatography-mass spectrometry and vibrational spectroscopy. The research explored the extract's activity against phytopathogenic fungi and oomycetes, elucidating its mechanism of action. The phytochemical profile revealed fatty acids (including tetradecanoic acid, 9-octadecenoic acid, n-hexadecanoic acid, dodecanoic acid, and octadecanoic acid), methoxyeugenol, and elemicin as the main constituents. Previously unreported phytochemicals included veratone, gelsevirine, and montanine. Significant radial growth inhibition of mycelia was observed against Botrytis cinerea, Colletotrichum acutatum, Diplodia corticola, Phytophthora cinnamomi, and especially against Fusarium culmorum. Mode of action investigation, involving Saccharomyces cerevisiae labeled positively with propidium iodide, and a mutant strain affected in ERG6, encoding sterol C-24 methyltransferase, suggested that the extract induces a necrotic type of death and targets ergosterol biosynthesis. The evidence presented underscores the potential of nutmeg as a source of new antimicrobial agents, showing particular promise against F. culmorum.


Assuntos
Myristica , Saccharomyces cerevisiae , Proteção de Cultivos , Ergosterol , Extratos Vegetais
5.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570830

RESUMO

Helichrysum stoechas is a singular halophyte that has been shown to have anti-inflammatory, antioxidant, and allelopathic properties. In the work presented herein, we have characterized its inflorescences hydromethanolic extract and assessed its antifungal activity for the pre- and postharvest management of tomato crop diseases. Gas chromatography-mass spectrometry characterization of the extract showed that 4-ethenyl-1,3-benzenediol, 2,3-dihydro-benzofuran, quinic acid, 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-1-benzopyran-4-one, 1,6-anhydro-ß-D-glucopyranose, catechol, scopoletin, and maltol were the main constituents. The co-occurrence of pyranones, benzenediols, and quinic acids as phytoconstituents of H. stoechas extract resulted in promising in vitro minimum inhibitory concentrations of 500, 375, 500, 187.5, 187.5, and 375 µg·mL-1 against mycelia of Alternaria alternata, Colletotrichum coccodes, Fusarium oxysporum f. sp. lycopersici, Rhizoctonia solani, Sclerotinia sclerotiorum, and Verticillium dahliae, respectively. Further, to assess the potential of H. stoechas inflorescence extract for postharvest tomato crop protection, ex situ tests were conducted against C. coccodes, obtaining high protection at a dose of 750 µg·mL-1. Taking into consideration that the demonstrated activity is among the highest reported to date for plant extracts and comparable to that of the synthetic fungicides tested as positive controls, H. stoechas inflorescence extract may be put forward as a promising biorational and may deserve further testing in field-scale studies.


Assuntos
Fusarium , Helichrysum , Solanum lycopersicum , Inflorescência , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Gerenciamento Clínico , Doenças das Plantas/prevenção & controle
6.
Plants (Basel) ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375877

RESUMO

The study of microbial communities associated with different plants of agronomic interest has allowed, in recent years, to answer a number of questions related to the role and influence of certain microbes in key aspects of their autoecology, such as improving the adaptability of the plant host to different abiotic or biotic stresses. In this study, we present the results of the characterization, through both high-throughput sequencing and classical microbiological methods, of the fungal microbial communities associated with grapevine plants in two vineyards of different ages and plant genotypes located in the same biogeographical unit. The study is configured as an approximation to the empirical demonstration of the concept of "microbial priming" by analyzing the alpha- and beta-diversity present in plants from two plots subjected to the same bioclimatic regime to detect differences in the structure and taxonomic composition of the populations. The results were compared with the inventories of fungal diversity obtained by culture-dependent methods to establish, where appropriate, correlations between both microbial communities. Metagenomic data showed a differential enrichment of the microbial communities in the two vineyards studied, including the populations of plant pathogens. This is tentatively explained due to factors such as the different time of exposure to microbial infection, different plant genotype, and different starting phytosanitary situation. Thus, results suggest that each plant genotype recruits differential fungal communities and presents different profiles of associated potential microbial antagonists or communities of pathogenic species.

7.
Plants (Basel) ; 12(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37375896

RESUMO

Mushroom extracts have shown potential as a source of new antimicrobial agents. This study investigates the chemical profile of an aqueous ammonia extract obtained from the carpophores of Ganoderma lucidum, which grows on Quercus ilex trees, and explores its valorization as a biorational. The major chemical constituents of the extract, identified through gas chromatography-mass spectrometry, include acetamide, oleic acid, 1,2,3,4-butanetetrol, monomethyl azelate, undecane, and palmitic acid. The anti-oomycete and antifungal activity of G. lucidum extract was evaluated against Phytophthora cinnamomi, the primary threat to Quercus spp. in the dehesa biome, as well as three Botryosphaeriaceae fungi. In vitro tests revealed minimum inhibitory concentration (MIC) values of 187.5 µg·mL-1 against P. cinnamomi and 187.5-1000 µg·mL-1 against the fungi. Furthermore, conjugation of the G. lucidum extract with chitosan oligomers (COS) synergistically enhanced its antimicrobial activity, resulting in MIC values of 78.12 and 375-500 µg·mL-1 against P. cinnamomi and the fungi, respectively. These MIC values are among the highest reported to date for natural products against these phytopathogens. Subsequent ex situ testing of the COS-G. lucidum conjugate complex on artificially inoculated Q. ilex excised stems resulted in high protection against P. cinnamomi at a dose of 782 µg·mL-1. These findings support the potential utilization of this resource from the dehesa ecosystem to protect the holm oak, aligning with sustainable and circular economy approaches.

8.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175142

RESUMO

The cliff rose (Armeria maritima), like other halophytes, has a phenolics-based antioxidant system that allows it to grow in saline habitats. Provided that antioxidant properties are usually accompanied by antimicrobial activity, in this study we investigated the phytochemicals present in a hydromethanolic extract of A. maritima flowers and explored its antifungal potential. The main phytocompounds, identified by gas chromatography-mass spectrometry, were: hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, 3-(3,4-dihydroxy-phenyl)-acrylic acid ethyl ester, and benzeneacetaldehyde. The antifungal activity of the extract and its main constituents-alone and in combination with chitosan oligomers-was tested against six pathogenic taxa associated with soil-borne diseases of plant hosts in the family Cucurbitaceae: Fusarium equiseti, F. oxysporum f. sp. niveum, Macrophomina phaseolina, Neocosmospora falciformis, N. keratoplastica, and Sclerotinia sclerotiorum. In in vitro tests, EC90 effective concentrations in the 166-865 µg·mL-1 range were obtained for the chitosan oligomers-A. maritima extract conjugate complexes, lower than those obtained for fosetyl-Al and azoxystrobin synthetic fungicides tested for comparison purposes, and even outperforming mancozeb against F. equiseti. In ex situ tests against S. sclerotiorum conducted on artificially inoculated cucumber slices, full protection was achieved at a dose of 250 µg·mL-1. Thus, the reported results support the valorization of A. maritima as a source of biorationals for Cucurbitaceae pathogens protection, suitable for both organic and conventional agriculture.


Assuntos
Quitosana , Cucurbitaceae , Fusarium , Micoses , Plumbaginaceae , Antifúngicos/farmacologia , Antifúngicos/química , Cucurbitaceae/microbiologia , Antioxidantes/farmacologia , Quitosana/farmacologia , Flores , Extratos Vegetais/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
9.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176904

RESUMO

Halophytes are gaining considerable attention due to their applications in saline agriculture, phytoremediation, medicine, and secondary metabolite production. This study investigated the bioactive components present in Silene uniflora (sea campion) hydromethanolic extract, and their antimicrobial activity was evaluated both in vitro and ex situ against two strawberry phytopathogens, namely Botrytis cinerea (grey mold) and Colletotrichum nymphaeae (anthracnose fruit rot). The main identified phytochemicals were mome inositol, saturated fatty acid esters, and cyclotetracosane. In vitro tests demonstrated complete inhibition of the growth of B. cinerea and C. nymphaeae at extract concentrations of 1000 and 1500 µg·mL-1, respectively, with an activity comparable to that of fosetyl-Al and substantially higher than that of azoxystrobin. This activity was improved upon conjugation with chitosan oligomers (COS), yielding inhibition values of 750 and 1000 µg·mL-1. The COS-S. uniflora conjugate complexes were then tested as protective treatments for postharvest storage of strawberry fruit, resulting in high protection against artificially inoculated B. cinerea and C. nymphaeae at doses of 3750 and 5000 µg·mL-1, respectively. The reported results open the door to the valorization of this halophyte as a source of biorationals for strawberry protection.

10.
RSC Adv ; 13(22): 14914-14929, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37200696

RESUMO

Arsenic is a widespread serious environmental pollutant as a food chain contaminant and non-threshold carcinogen. Arsenic transfer through the crops-soil-water system and animals is one of the most important pathways of human exposure and a measure of phytoremediation. Exposure occurs primarily from the consumption of contaminated water and foods. Various chemical technologies are utilized for As removal from contaminated water and soil, but they are very costly and difficult for large-scale cleaning of water and soil. In contrast, phytoremediation utilizes green plants to remove As from a contaminated environment. A large number of terrestrial and aquatic weed flora have been identified so far for their hyper metal removal capacity. In the panorama presented herein, the latest state of the art on methods of bioaccumulation, transfer mechanism of As through plants and animals, and remediation that encompass the use of physicochemical and biological processes, i.e., microbes, mosses, lichens, ferns, algae, and macrophytes have been assessed. Since these bioremediation approaches for the clean-up of this contaminant are still at the initial experimental stages, some have not been recognized at full scale. Nonetheless, extensive research on these primitive plants as bio-accumulators can be instrumental in controlling arsenic exposure and rehabilitation and may result in major progress to solve the problem on a worldwide scale.

11.
Insects ; 14(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37103211

RESUMO

The western conifer seed bug (Leptoglossus occidentalis Heidemann, 1910, Heteroptera: Coreidae) has a significant economic impact due to the reduction in the quality and viability of conifer seed crops; it can feed on up to 40 different species of conifers, showing a clear predilection for Pinus pinea L. in Europe. Its incidence is especially relevant for the pine nut-producing industry, given that the action of this pest insect can reduce the production of pine nuts by up to 25%. As part of ongoing efforts aimed at the design of control strategies for this insect, this work focuses on the characterization (by scanning electron microscopy-energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and gas chromatography-mass spectroscopy, GC-MS) of the compounds released by these insects during oviposition, with emphasis on the adhesive secretion that holds L. occidentalis eggs together. Elemental analysis pointed to the presence of significant amounts of compounds with high nitrogen content. Functional groups identified by infrared spectroscopy were compatible with the presence of chitin, scleroproteins, LNSP-like and gelatin proteins, shellac wax analogs, and policosanol. Regarding the chemical species identified by GC-MS, eggs and glue hydromethanolic extracts shared constituents such as butyl citrate, dibutyl itaconate, tributyl aconitate, oleic acid, oleamide, erucamide, and palmitic acid, while eggs also showed stearic and linoleic acid-related compounds. Knowledge of this composition may allow advances in new strategies to address the problem caused by L. occidentalis.

12.
RSC Adv ; 13(13): 8803-8821, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36936841

RESUMO

Arsenic is one of the regulated hazard materials in the environment and a persistent pollutant creating environmental, agricultural and health issues and posing a serious risk to humans. In the present review, sources and mobility of As in various compartments of the environment (air, water, soil and sediment) around the World are comprehensively investigated, along with measures of health hazards. Multiple atomic spectrometric approaches have been applied for total and speciation analysis of As chemical species. The LoD values are basically under 1 µg L-1, which is sufficient for the analysis of As or its chemical species in environmental samples. Both natural and anthropogenic sources contributed to As in air, while fine particulate matter tends to have higher concentrations of arsenic and results in high concentrations of As up to a maximum of 1660 ng m-3 in urban areas. Sources for As in natural waters (as dissolved or in particulate form) can be attributed to natural deposits, agricultural and industrial effluents, for which the maximum concentration of 2000 µg L-1 was found in groundwater. Sources for As in soil can be the initial contents, fossil fuel burning products, industrial effluents, pesticides, and so on, with a maximum reported concentration up to 4600 mg kg-1. Sources for As in sediments can be attributed to their reservoirs, with a maximum reported concentration up to 2500 mg kg-1. It is notable that some reported concentrations of As in the environment are several times higher than permissible limits. However, many aspects of arsenic environmental chemistry including contamination of the environment, quantification, mobility, removal and health hazards are still unclear.

13.
Plants (Basel) ; 12(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771661

RESUMO

Botrytis cinerea is the most harmful postharvest disease of table grapes. Among the strategies that can be envisaged for its control, the use of coatings based on natural products is particularly promising. The study presented herein focuses on the assessment of the antagonistic capacity of two Streptomyces species and their culture filtrates against B. cinerea. Firstly, the secondary metabolites were characterized by gas chromatography-mass spectrometry, with N1-(4-hydroxybutyl)-N3-methylguanidine acetate and 2R,3S-9-[1,3,4-trihydroxy-2-butoxymethyl]guanine acetate as the main compounds produced by S. lavendofoliae DSM 40217; and cyclo(leucyloprolyl) and cyclo(phenylalanylprolyl) as the most abundant chemical species for S. rochei DSM 41729. Subsequently, the capacity of S. lavendofoliae DSM 40217 and S. rochei DSM 41729 to inhibit the growth of the pathogen was tested in dual culture plate assays, finding 85-90% inhibition. In agar dilution tests, their culture filtrates resulted in effective concentration values (EC90) in the 246-3013 µg·mL-1 range. Upon the formation of conjugate complexes with chitosan oligomers (COS) to improve solubility and bioavailability, a synergistic behavior was observed, resulting in lower EC90 values, ranging from 201 to 953 µg·mL-1. Ex situ tests carried out on 'Timpson' and 'Red Globe' table grapes using the conjugate complexes as coatings were found to maintain the turgor of the grapes and delay the appearance of the pathogen by 10-15 days at concentrations in the 750-1000 µg·mL-1 range. Hence, the conjugate complexes of COS and the selected Streptomyces spp. culture filtrates may be put forward as promising protection treatments for the sustainable control of gray mold.

14.
Plants (Basel) ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771717

RESUMO

Machine Learning (ML) techniques can be used to convert Big Data into valuable information for agri-environmental applications, such as predictive pest modeling. Lobesia botrana (Denis & Schiffermüller) 1775 (Lepidoptera: Tortricidae) is one of the main pests of grapevine, causing high productivity losses in some vineyards worldwide. This work focuses on the optimization of the Touzeau model, a classical correlation model between temperature and L. botrana development using data-driven models. Data collected from field observations were combined with 30 GB of registered weather data updated every 30 min to train the ML models and make predictions on this pest's flights, as well as to assess the accuracy of both Touzeau and ML models. The results obtained highlight a much higher F1 score of the ML models in comparison with the Touzeau model. The best-performing model was an artificial neural network of four layers, which considered several variables together and not only the temperature, taking advantage of the ability of ML models to find relationships in nonlinear systems. Despite the room for improvement of artificial intelligence-based models, the process and results presented herein highlight the benefits of ML applied to agricultural pest management strategies.

15.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674670

RESUMO

Despite extensive research on the chemical composition of elderberries and their numerous uses in pharmaceutical, beverage, and food production, there is still a lack of knowledge about Sambucus nigra leaves and flowers' antimicrobial activity against plant pathogens. In this study, the phytoconstituents of their aqueous ammonia extracts were first characterized by infrared spectroscopy and gas chromatography-mass spectrometry. The major phytocompounds identified in the flower extract were octyl 2-methylpropanoate; 3,5-dihydroxy-6-methyl-2,3-dihydropyran-4-one; propyl malonic acid; adenine; and 1-methyl-2-piperidinemethanol. Concerning the leaf extract, 1,6-anhydro-ß-D-glucopyranose; oleic acid; 2,1,3-benzothiadiazole; 2,3-dihydro-benzofuran; and 4-((1E)-3-hydroxy-1-propenyl)-2-methoxyphenol and other phenol derivatives were the main constituents. The potential of the extracts to act as bioprotectants was then investigated against three almond tree pathogens: Diaporthe amygdali, Phytophthora megasperma, and Verticillium dahliae. In vitro tests showed higher activity of the flower extract, with EC90 values in the 241-984 µg·mL-1 range (depending on the pathogen) vs. 354-1322 µg·mL-1 for the leaf extract. In addition, the flower extract led to full protection against P. megasperma at a dose of 1875 µg·mL-1 in ex situ tests on artificially-infected excised almond stems. These inhibitory concentrations were lower than those of commercial fungicides. These findings suggest that S. nigra aerial organs may be susceptible to valorization as an alternative to synthetic fungicides for the protection of this important crop.


Assuntos
Anti-Infecciosos , Fungicidas Industriais , Prunus dulcis , Sambucus nigra , Sambucus nigra/química , Extratos Vegetais/química , Fungicidas Industriais/análise , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Flores/química
16.
Plants (Basel) ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559527

RESUMO

Cork, an anatomic adaptation of the bark of Quercus suber L. through its suberization process, finds its main application in the production of bottle stoppers. Its processing results in a large waste stream of cork fragments, granulates, and dust, which may be susceptible to valorization. The work presented here explored the use of its extracts to inhibit the growth of phytopathogenic microorganisms associated with apple tree diseases. The in vitro antimicrobial activity of cork aqueous ammonia extract was assayed against four fungi, viz. Monilinia fructigena and M. laxa (brown rot), Neofussicoccum parvum (dieback), and Phytophthora cactorum (collar and root rot), and two bacteria, viz. Erwinia amylovora and Pseudomonas syringae pv. syringae, either alone or in combination with chitosan oligomers (COS). Effective concentration values of EC90 in the 675-3450 µg·mL-1 range, depending on the fungal pathogen, were obtained in growth inhibition tests, which were substantially improved for the conjugate complexes (340-801 µg·mL-1) as a result of strong synergism with COS. Similar enhanced behavior was also observed in antibacterial activity assays, with MIC values of 375 and 750 µg·mL-1 for the conjugate complexes against P. syringae pv. syringae and E. amylovora, respectively. This in vitro inhibitory activity was substantially higher than those exhibited by azoxystrobin and fosetyl-Al, which were tested for comparison purposes, and stood out among those reported for other natural compounds in the literature. The observed antimicrobial activity may be mainly attributed to the presence of glycerin and vanillic acid, identified by gas chromatography-mass spectroscopy. In the first step towards in-field application, the COS-Q. suber bark extract conjugate complex was further tested ex situ against P. cactorum on artificially inoculated excised stems of the 'Garnem' almond rootstock, achieving high protection at a dose of 3750 µg·mL-1. These results suggest that cork industrial leftovers may, thus, be a promising source of bioactive compounds for integrated pest management.

17.
Materials (Basel) ; 15(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36556785

RESUMO

In this study, a graphitic carbon nitride and chitosan oligomers (g-C3N4−COS) nanocarrier assembly, which was obtained by cross-linking with methacrylic anhydride (MA), was synthesized and characterized. Its characterization was carried out using infrared spectroscopy, elemental and thermal analyses, and transmission electron microscopy. The new nanocarriers (NCs), with an average particle size of 85 nm in diameter and a 0.25 dispersity index, showed photocatalytic activity (associated with the g-C3N4 moiety), susceptibility to enzymatic degradation (due to the presence of the COS moiety), and high encapsulation and moderate-high release efficiencies (>95% and >74%, respectively). As a proof of concept, the visible-light-driven photocatalytic activity of the NCs was tested for rhodamine B degradation and the reduction of uranium(VI) to uranium(IV). Regarding the potential of the nanocarriers for the encapsulation and delivery of bioactive products for crop protection, NCs loaded with Rubia tinctorum extracts were investigated in vitro against three Vitis vinifera phytopathogens (viz. Neofusicoccum parvum, Diplodia seriata, and Xylophilus ampelinus), obtaining minimum inhibitory concentration values of 750, 250, and 187.5 µg·mL−1, respectively. Their antifungal activity was further tested in vivo as a pruning wound protection product in young 'Tempranillo' grapevine plants that were artificially infected with the two aforementioned species of the family Botryosphaeriaceae, finding a significant reduction of the necrosis lengths in the inner woody tissues. Therefore, g-C3N4-MA-COS NCs may be put forward as a multifunctional platform for environmental and agrochemical delivery applications.

18.
Membranes (Basel) ; 12(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363659

RESUMO

The technology of gas-permeable tubular membranes (GPMs) is promising in reducing ammonia emissions from livestock manure, capturing NH3 in an acidic solution, and obtaining final products suitable for valorization as fertilizers, in line with the principles of the circular economy. This study aimed to evaluate the performance of several e-PTFE membrane systems with different configurations for the recovery of NH3 released from pig slurry. Ten different configurations were tested: only a submerged membrane, only a suspended membrane in the same chamber, only a suspended membrane in an annex chamber, a submerged membrane + a suspended membrane in the same chamber, and a submerged membrane + a suspended membrane in an annex chamber, considering in each case the scenarios without and with agitation and aeration of the slurry. In all tests, sulfuric acid (1N H2SO4) was used as the NH3 capture solution, which circulated at a flow rate of 2.1 L·h-1. The results showed that NH3-N removal rates ranged from 36-39% (for systems with a single submerged or suspended membrane without agitation or aeration of the slurry) to 70-72% for submerged + suspended GPM systems with agitation and aeration. In turn, NH3-N recovery rates were found to be between 44-54% (for systems with a single membrane suspended in an annex compartment) and 88-91% (for systems based on a single submerged membrane). However, when choosing a system for farm deployment, it is essential to consider not only the capture and recovery performance of the system, but also the investment and operating costs (ranging from 9.8 to 21.2 €/kg N recovered depending on the selected configuration). The overall assessment suggests that the simplest systems, based on a single membrane, may be the most recommendable.

19.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233184

RESUMO

Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) bark is a commonly used remedy to treat gastrointestinal disorders, throat and skin infections, hemorrhages, and dysentery. It has also been previously reported that its methanol extracts possess antibacterial activity, which can be related to the richness of Quercus spp. extracts in phenolic compounds, such as flavonoids and tannins. However, there is no information on the antifungal (including oomycete) properties of the bark from Q. ilex or its subspecies (ilex and ballota). In this work, we report the characterization of the aqueous ammonia extract of its bark by FTIR and GC-MS and the results of in vitro and ex situ inhibition tests against three phytopathogens. The main phytochemical components identified were inositols (19.5%), trans-squalene (13%), 4-butoxy-1-butanol (11.4%), gulopyranose (9.6%), lyxose (6.5%), 2,4-dimethyl-benzo[H]quinoline (5.1%), catechol (4.5%), and methoxyphenols (4.2%). The efficacy of the extract in controlling forest phytopathogens was tested in vitro against Fusarium circinatum (responsible for pitch canker of Pinus spp.), Cryphonectria parasitica (which causes chestnut blight), and Phytophthora cinnamomi (which causes 'root and crown rot' in a variety of hosts, including Castanea, conifers, Eucalyptus, Fagus, Juglans, Quercus, etc.), obtaining EC90 values of 322, 295, and 75 µg·mL-1, respectively, much lower than those attained for a commercial strobilurin fungicide (azoxystrobin). The extract was further tested ex situ against P. cinnamomi on artificially inoculated, excised stems of 'Garnem' almond rootstock, attaining complete protection at a dose of 782 µg·mL-1. The results suggest that holm oak bark extract may be a promising source of bioactive compounds against invasive forest pathogens, including the oomycete that is causing its decline, the so-called 'seca' in Spain.


Assuntos
Ballota , Fungicidas Industriais , Phytophthora , Quercus , Quinolinas , 1-Butanol , Amônia , Antibacterianos , Antifúngicos/farmacologia , Catecóis , Flavonoides , Florestas , Metanol , Phytophthora/fisiologia , Casca de Planta , Extratos Vegetais/farmacologia , Quercus/fisiologia , Esqualeno , Estrobilurinas , Taninos
20.
Membranes (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35736280

RESUMO

Gas permeable membranes (GPM) are a promising technology for the capture and recovery of ammonia (NH3). The work presented herein assessed the impact of the capture solution and temperature on NH3 recovery for suspended GPM systems, evaluating at a laboratory scale the performance of eight different trapping solutions (water and sulfuric, phosphoric, nitric, carbonic, carbonic, acetic, citric, and maleic acids) at 25 and 2 °C. At 25 °C, the highest NH3 capture efficiency was achieved using strong acids (87% and 77% for sulfuric and nitric acid, respectively), followed by citric and phosphoric acid (65%) and water (62%). However, a remarkable improvement was observed for phosphoric acid (+15%), citric acid (+16%), maleic acid (+22%), and water (+12%) when the capture solution was at 2 °C. The economic analysis showed that water would be the cheapest option at any working temperature, with costs of 2.13 and 2.52 €/g N (vs. 3.33 and 3.43 €/g N for sulfuric acid) in the winter and summer scenarios, respectively. As for phosphoric and citric acid, they could be promising NH3 trapping solutions in the winter months, with associated costs of 3.20 and 3.96 €/g N, respectively. Based on capture performance and economic and environmental considerations, the reported findings support that water, phosphoric acid, and citric acid can be viable alternatives to the strong acids commonly used as NH3 adsorbents in these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA