Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 332: 121961, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37277071

RESUMO

Inadvertent human exposure to microplastics by the ingestion of microplastic-contaminated processed foods poses health risks and new preventative issues; nevertheless, investigations analyzing microplastic occurrences in commercially dried fish for direct human consumption are scarce. This study assessed the abundance and characteristics of microplastics in 25 commercially sold dried fish products (4 supermarkets, 3 street vendors, and 18 traditional agri-product farmers' markets) from two widely consumed and commercially important Chirostoma species (C. jordani and C. patzcuaro) in Mexico. Microplastics were detected in all the samples examined, with abundances ranging from 4.00 ± 0.94 to 55.33 ± 9.43 items g-1. C. jordani dried fish samples had higher mean microplastic abundance (15.17 ± 5.90 items g-1) than the C. patzcuaro dried fish samples (7.82 ± 2.90 items g-1); nevertheless, there was no statistically significant difference in microplastic concentrations between the samples. The most prevalent type of microplastic was fiber (67.55%), followed by fragment (29.18%), film (3.00%), and sphere (0.27%). Non-colored microplastics (67.35%) predominated, while microplastic sizes varied from 24 to 1670 µm, with sizes less than 500 µm (84%) being the most common. ATR-FTIR analysis revealed polyester, acrylonitrile butadiene styrene, polyvinyl alcohol, ethylene-propylene copolymer, nylon-6 (3), cellophane, and viscose in the dried fish samples. Overall, this study's findings are the first in Latin America to demonstrate microplastic contamination in dried fish for human consumption, underscoring the need for developing countermeasures to prevent plastic pollution in fish-caught regions and reduce the risks of human exposure to these micropollutants.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Animais , Microplásticos/análise , Plásticos/análise , México , Lanches , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes
2.
Sci Total Environ ; 847: 157601, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35882345

RESUMO

While atmospheric microplastics have attracted scientific attention as a significant source of microplastic contamination in the environment, studies in large population centers remain sparse. Here we present the first report on the occurrence and distribution of atmospheric microplastics in Mexico City (Latin America's second most densely populated city), collected using PM10 and PM2.5 active samplers at seven monitoring stations (urban, residential, and industrial) during the dry and wet seasons of 2020. The results showed that microplastics were detected in all of the samples examined, with mean microplastic concentrations (items m-3) of 0.205 ± 0.061 and 0.110 ± 0.055 in PM10 and PM2.5, respectively. The spatial distribution of microplastics showed seasonal variation, with greater abundances in locations closer to industrial and urban centers. There was also a significant difference in microplastic concentrations in PM10 and PM2.5 between the dry and wet seasons. The mean PM2.5/PM10 ratio was 0.576, implying that microplastics were partitioned more towards PM2.5 than PM10 in Mexico City. Fibers were the most prominent shape (>75 %), and blue was the most common color (>60 %). The size characteristics indicated microplastics of varying lengths, ranging from 39 to 5000 µm, with 66 % being <500 µm. Metal contaminants such as aluminum, iron, and titanium were detected using SEM-EDX on randomly selected microplastics. The microplastics were identified as cellophane, polyethylene, polyethylene terephthalate, polyamide, and cellulose (rayon) using ATR-FTIR spectral analysis. Our findings unravel the extent and characteristics of atmospheric microplastics in the Mexico City metropolitan area, which will aid future research to better understand their fate, transport, and potential health risks, demanding more investigations and close monitoring.


Assuntos
Plásticos , Poluentes Químicos da Água , Alumínio/análise , Celofane , Monitoramento Ambiental/métodos , Ferro/análise , México , Microplásticos , Nylons , Material Particulado/análise , Plásticos/análise , Polietilenotereftalatos , Polietilenos/análise , Titânio/análise , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 415: 125755, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34088209

RESUMO

The identification and quantification of metals in microplastics are necessary to determine their exposure levels as well as to understand their potential toxicity in the environment linked to the ubiquity of microplastics. The readiness of effective protocols and measurement techniques for accurate metal quantification is of utmost importance. This first review, based on 28 original articles, provides a systematic assessment of the current protocols for extraction, detection and quantification of metals in microplastics and the challenges associated with them. Quality assurance and quality control measures are also summarized. Great variations of microplastic samples in terms of characteristics, number, mass and unit were noted. Wet acid and microwave acid digestion methods were commonly employed for metal extraction from microplastics using a combination of acids such as HF, HCl, HNO3 and H2SO4 at different concentrations and reaction conditions. Adaptation of one or multiple characterization techniques including, inductively coupled plasma-optical emission spectroscopy, inductively coupled plasma mass-spectrometry, X-ray fluorescence and atomic absorption spectroscopy has been considered. The discrepancies in methodology and elements analyzed between studies produce variable results and troublesome comparison. Having considered the need for a standard procedure, this review highlighted several suggestions towards standardization and recommended perspectives for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA