RESUMO
In this work, we performed anti-proliferative assays for the compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on breast cancer (BC) cells (MCF-7, SKBR3, and triple-negative BC (TNBC) MDA-MB-231 cells) to explore its pharmacological mechanism regarding the type of cell death associated with G protein-coupled estrogen receptor (GPER) expression. The results show that HO-AAVPA induces cell apoptosis at 5 h or 48 h in either estrogen-dependent (MCF-7) or -independent BC cells (SKBR3 and MDA-MB-231). At 5 h, the apoptosis rate for MCF-7 cells was 68.4% and that for MDA-MB-231 cells was 56.1%; at 48 h, that for SKBR3 was 61.6%, that for MCF-7 cells was 54.9%, and that for MDA-MB-231 (TNBC) was 43.1%. HO-AAVPA increased the S phase in MCF-7 cells and reduced the G2/M phase in MCF-7 and MDA-MB-231 cells. GPER expression decreased more than VPA in the presence of HO-AAVPA. In conclusion, the effects of HO-AAVPA on cell apoptosis could be modulated by epigenetic effects through a decrease in GPER expression.
Assuntos
Apoptose , Neoplasias da Mama , Pontos de Checagem do Ciclo Celular , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Apoptose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Estrogênio/metabolismo , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Amidas/farmacologia , Amidas/químicaRESUMO
Introduction: Cardiovascular diseases are the leading cause of death worldwide. The combination of statins and cholesterol-absorption inhibitors promotes the decrease in risk factors, such as high concentrations of LDL (low-density lipoproteins). The aim of the study was to evaluate changes in the lipid profile and the effect on therapeutic goals, as well as the safety of dyslipidemia patients treated with Rosuvastatin/Ezetimibe (Trezete®). Materials and Methods: A real-world evidence study was conducted with retrospective data collection through a review of clinical records from dyslipidemia patients treated with Trezete® in routine medical practice. Clinical records included results of biochemical markers before treatment and at least one follow up between weeks 8 and 16. Results: The study included 103 patients' clinical records (55.4% men) with a mean age of 56.0 ± 13.0 years. More than 57% of the patients had mixed dyslipidemia and a median disease progression of 3.1 (IQR, 1.5; 9.1) years. Regarding LDL concentrations, 72.8% of the patients achieved therapeutic goals according to cardiovascular risk (CVR), which was statistically significant. Similarly, 94.1% achieved goals for total cholesterol (<200 mg/dL) and 56.0% for triglycerides (<150 mg/dL), a p value <0.001. No cardiovascular events were observed. Conclusion: Trezete® shows an important clinical impact on CVR-related target markers during the treatment of dyslipidemia patients. It is relevant to mention that a significant percentage of patients achieved therapeutic goals during the first months of treatment. Fixed-dose combination therapy has shown to be as safe as monotherapy treatment. ClinicalTrials.gov Identifier: NCT04862962.
RESUMO
Preceding experimental findings revealed that the release of indomethacin decreased when a folate conjugate G4-PAMAM (folate-G4-PAMAM) dendrimer was used compared with its unconjugated dendrimer (G4-PAMAM). Further, better encapsulation of the conjugated dendrimer was achieved, information useful for elucidating the structural and energetic basis of indomethacin on folate-G4-PAMAM encapsulation. In this study, we employed a ligand diffusion molecular dynamic simulations (LDMDSs) strategy combined with the molecular mechanics-generalized-born surface area (MMGBSA) approach to explore the mechanism by which indomethacin conjugated to folate-G4-PAMAM dendrimer forms complexes better than G4-PAMAM dendrimer. To this, we first constructed and equilibrated the folate-G4-PAMAM dendrimer, then, this system was submitted to docking and molecular dynamics (MD) simulation to evaluate its ability to form a stable complex with the folate receptor (FR). We observed that the folate-G4-PAMAM dendrimer was able to bind FR with higher affinity than free folic acid. Based on these results, we further performed LDMDSs to assess folate-G4-PAMAM dendrimer and G4-PAMAM dendrimer contacts with indomethacin. Our results correlate with experimental data, which confirm that folate-G4-PAMAM dendrimers are capable of most rapidly binding greater numbers of indomethacin molecules than G4-PAMAM, which suggests better loading and slower release occurs when the functionalized G4-PAMAM dendrimer is used. The simulations further revealed that van der Waals interactions govern the affinity.Communicated by Ramaswamy H. Sarma.
Assuntos
Dendrímeros , Dendrímeros/química , Ácido Fólico/química , Concentração de Íons de Hidrogênio , Indometacina , Ligantes , Simulação de Dinâmica MolecularRESUMO
Quorum sensing is a communication system among bacteria to sense the proper time to express their virulence factors. Quorum sensing inhibition is a therapeutic strategy to block bacterial mechanisms of virulence. The aim of this study was to synthesize and evaluate new bioisosteres of N-acyl homoserine lactones as Quorum sensing inhibitors in Chromobacterium violaceum CV026 by quantifying the specific production of violacein. Five series of compounds with different heterocyclic scaffolds were synthesized in good yields: thiazoles, 16a-c, thiazolines 17a-c, benzimidazoles 18a-c, pyridines 19a-c and imidazolines 32a-c. All 15 compounds showed activity as Quorum sensing inhibitors except 16a. Compounds 16b, 17a-c, 18a, 18c, 19c and 32b exhibited activity at concentrations of 10 µM and 100 µM, highlighting the activity of benzimidazole 18a (IC50 = 36.67 µM) and 32b (IC50 = 85.03 µM). Pyridine 19c displayed the best quorum sensing inhibition activity (IC50 = 9.66 µM). Molecular docking simulations were conducted for all test compounds on the Chromobacterium violaceum CviR protein to gain insight into the process of quorum sensing inhibition. The in-silico data reveal that all 15 the compounds have higher affinity for the protein than the native AHL ligand (1). A strong correlation was found between the theoretical and experimental results.
Assuntos
Percepção de Quorum/fisiologia , Acil-Butirolactonas/metabolismo , Chromobacterium/química , Indóis/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Percepção de Quorum/genéticaRESUMO
Among targets selected for studies aimed at identifying potential inhibitors against COVID-19, SARS-CoV2 main proteinase (Mpro) is highlighted. Mpro is indispensable for virus replication and is a promising target of potential inhibitors of COVID-19. Recently, monomeric SARS-CoV2 Mpro, drug repurposing, and docking methods have facilitated the identification of several potential inhibitors. Results were refined through the assessment of dimeric SARS-CoV2 Mpro, which represents the functional state of enzyme. Docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area (MM/GBSA) studies indicated that dimeric Mpro most significantly impacts binding affinity tendency compared with the monomeric state, which suggests that dimeric state is most useful when performing studies aimed at identifying drugs targeting Mpro. In this study, we extend previous research by performing docking and MD simulation studies coupled with an MM/GBSA approach to assess binding of dimeric SARS-CoV2 Mpro to 12 FDA-approved drugs (darunavir, indinavir, saquinavir, tipranavir, diosmin, hesperidin, rutin, raltegravir, velpatasvir, ledipasvir, rosuvastatin, and bortezomib), which were identified as the best candidates for the treatment of COVID-19 in some previous dockings studies involving monomeric SARS-CoV2 Mpro. This analysis identified saquinavir as a potent inhibitor of dimeric SARS-CoV2 Mpro; therefore, the compound may have clinical utility against COVID-19. Graphical abstract.
Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Inibidores de Proteases/farmacologia , Saquinavir/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Betacoronavirus/enzimologia , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/virologia , Cisteína Endopeptidases , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/virologia , Inibidores de Proteases/química , Multimerização Proteica , SARS-CoV-2 , Saquinavir/químicaRESUMO
PURPOSE: The aim of this study was to assess the pharmacokinetic interactions between a newly developed dipeptidyl peptidase (DPP)-4 inhibitor, gemigliptin, and metformin in healthy Mexican male volunteers, and the differences in the pharmacokinetic profile of gemigliptin between Korean and Mexican healthy volunteers. METHODS: This was a multiple-dose, randomized, open-label, 3-way, 3-period crossover study. Subjects were randomized to 1 of 3 treatment sequences and received gemigliptin 50mg once a day, metformin1000mg BID, or both drugs during a 7-day treatment period, and underwent sampling for pharmacokinetic analysis and tolerability assessments. Point estimates and 90% CIs of Cmax,ss and AUCτ,ss least squares mean (LSM) ratios of the concurrent administration of gemigliptinâ¯+â¯metformin to the administration of monotherapy with either drug were obtained, and the pharmacokinetic profile of gemigliptin observed was compared with that in healthy Korean volunteers studied during the initial development of gemigliptin. FINDINGS: The coadministration of gemigliptinâ¯+â¯metformin did not affect the pharmacokinetic characteristics of gemigliptin (LSM ratio [90% CI] for Cmax,ss and AUCτ,ss: 0.98 [0.87-1.10] and 0.94 [0.91-0.98], respectively) or metformin (LSM ratio [90% CI] for Cmax,ss and AUCτ,ss: 0.97 [0.88-1.08] and 1.02 [0.93-1.12], respectively) when administered as monotherapy and was well tolerated. In contrast with Korean healthy volunteers, Mexican subjects showed a modestly higher gemigliptin exposure (LSM ratio [90% CI] for AUCτ,ss: 1.22 [1.14-1.31]). IMPLICATIONS: The results of this study support, in ethnically different populations, the absence of drug-drug interactions between gemigliptin and metformin previously shown in Korean healthy volunteers. Considering the flat effect-concentration curve and wide therapeutic range of gemigliptin, the pharmacokinetic profile of gemigliptin observed in healthy Mexican and Korean subjects suggests that gemigliptin use in Mexican patients may be associated with outcomes, in terms of efficacy and tolerability, similar to those observed in the Korean population. ClinicalTrials.gov identifier: NCT03310749.
Assuntos
Inibidores da Dipeptidil Peptidase IV/farmacocinética , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Piperidonas/farmacocinética , Pirimidinas/farmacocinética , Adulto , Área Sob a Curva , Estudos Cross-Over , Interações Medicamentosas , Humanos , Masculino , México , República da Coreia , Adulto JovemRESUMO
BACKGROUND: Recent reports have demonstrated the role of the G Protein-Coupled Estrogen Receptor 1 (GPER1) on the proliferation of breast cancer. The coupling of GPER1 to estrogen triggers cellular signaling pathways related to cell proliferation. OBJECTIVE: Develop new therapeutic strategies against breast cancer. METHOD: We performed in silico studies to explore the binding mechanism of a set of G15 /G1 analogue compounds. We included a carboxyl group instead of the acetyl group from G1 to form amides with several moieties to increase affinity on GPER1. The designed ligands were submitted to ligand-based and structure-based virtual screening to get insights into the binding mechanism of the best designed compound and phenol red on GPER1. RESULTS: According to the in silico studies, the best molecule was named G1-PABA ((3aS,4R,9bR)-4-(6- bromobenzo[d][1,3]dioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-carboxylic acid). It was synthesized and assayed in vitro in breast cancer (MCF-7 and MDA-MB-231) and normal (MCF-10A) cell lines. Experimental studies showed that the target compound was able to decrease cell proliferation, IC50 values of 15.93 µM, 52.92 µM and 32.45 µM in the MCF-7, MDA-MB-231 and MCF-10A cell lines, respectively, after 72 h of treatment. The compound showed better IC50 values without phenol red, suggesting that phenol red interfere with the G1-PABA action at GPER1, as observed through in silico studies, which is present in MCF-7 cells according to PCR studies and explains the cell proliferation effects. CONCLUSION: Concentration-dependent inhibition of cell proliferation occurred with G1-PABA in the assayed cell lines and could be due to its action on GPER1.
Assuntos
Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Avaliação Pré-Clínica de Medicamentos , Ligantes , Simulação de Dinâmica Molecular , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Benzodioxóis/síntese química , Benzodioxóis/química , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Quinolinas/síntese química , Quinolinas/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Células Tumorais CultivadasRESUMO
Dendrimers are synthetic macromolecules with a highly-branched structure and high concentration of surface groups. Among dendrimers, Poly(amidoamine) (PAMAM) has received substantial attention as a novel drug carrier and delivery system. Depending on the generation and type of terminal groups, dendrimer toxicity could change and include cytotoxicity. Although PAMAM is water soluble, molecular modeling of the dendrimer-drug complex is considered challenging for exploring the conformational mobility of dendrimers and atomic specific interactions during the dendrimer-drug association. However, conventional protocols for predicting binding affinities have been designed for small protein molecules or protein-protein complexes that can be applied to study the dendrimer-drug association. In this work, we performed docking calculations for a set of 94 previously reported compounds on PAMAM of fourth generation (G4-PAMAM) to select six compounds, cromoglicic acid (CRO) - a mast cell stabilizer, Fusidic acid (FUS) - a bacteriostatic antibiotic, and Methotrexate (MTX) - a chemotherapy agent and immune system suppressant, which have the highest affinities for G4-PAMAM, and Lidocaine (LDC) - used to numb tissue in a specific area and for ventricular tachycardia treatment, Metoprolol (MET) - a ß1 receptor blocker, and Pindolol (PIN) - a ß blocker, which have the lowest affinities for the G4-PAMAM dendrimer, to perform MD simulations combined with the molecular mechanics generalized/Poisson-Boltzmann surface area MMGBSA/MMPBSA approach to investigate the interactions of generating 4 charge-neutral, charge-basic and charge-acid G4-PAMAM dendrimers. In addition, to validate these theoretical G4-PAMAM-drug complexes, the complexes were experimentally conjugated to determine their stability in aqueous solubility studies immediately and over one year. Our results show that among the different commercial drugs, both charged and neutral PAMAM have the most favorable binding free energies for CRO, MTX, and FUS, which appears to be due to a complex counterbalance of electrostatics and van der Waals interactions. These theoretical and aqueous solubility studies supported the high affinity of methotrexate for the G4-PAMAM-drug due to its carboxyl and aryl moieties that favor its accommodation by noncovalent interactions.