Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Prog Biophys Mol Biol ; 191: 40-57, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969306

RESUMO

Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.

2.
IBRO Neurosci Rep ; 12: 82-89, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35036988

RESUMO

In the peripheral nervous system aquaporins (AQPs) have been reported in both peripheral neurons and glial cells. Previously we described the precise localization of AQP1 in the rat sciatic nerve, which is present in both Remak and myelin Schwann cells, and is enriched in the Schmidt-Lanterman incisures. In this work, we found that AQP1 in mouse is only present in Remak cells, showing a different localization between these species. However, after nerve crush injury the level of AQP1 mRNA expression remains constant at all times studied in rat and mouse. We then performed RT-PCR of nine AQP (AQP1-9) isoforms from rat and mouse sciatic nerve, we found that in rat only five AQPs are present (AQP1, AQP4, AQP5, AQP7 and AQP9), whereas in mouse all AQPs except AQP8 are expressed. Then, we studied the expression by RT-PCR of AQPs in rat after nerve crush injury, showing that AQP1, AQP4 and AQP7 expression remain constant at all times studied, while AQP2, AQP5 and AQP9 are upregulated after injury. Therefore, these two closely related rodents show different AQP1 localization and have different AQPs expression patterns in the sciatic nerve, possibly due to a difference in the regulation of these AQPs. The expression of AQP1 in Remak cells supports the involvement of AQP1 in pain perception. Also, in rat the upregulation of AQP2, AQP5 and AQP7 after nerve injury suggests a possible role for these AQPs in promoting regeneration following injury.

3.
J Neurosci Methods ; 304: 46-51, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29596858

RESUMO

BACKGROUND: The Golgi silver method has been widely used in neuroscience for the study of normal and pathological morphology of neurons. The method has been steadily improved and Bielschowsky's silver staining method (BSSM) is widely used in various pathological conditions, like Alzheimer's disease. NEW METHOD: In this work, teased sciatic nerves were silver impregnated using BSSM. We also developed simultaneous staining by silver impregnation and single- or double-immunofluorescence of the same section in teased nerve preparations. We immunostained against non-myelinating Schwann cells and different myelinating Schwann cell domains. RESULTS: BSSM teased nerves show a strong staining of axons (black) and a gold-brown staining of myelinating and non-myelinating Schwann cells. We were also able to stain by immunofluorescence these BSSM teased nerves with specific molecular markers against non-myelinating Schwann cells, also against non-compact myelin such as the Schmidt-Lanterman incisures or paranodal regions and compact myelin, but not axons. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: In peripheral nerves, several silver impregnation methods have been used to stain nerves in paraffin sections, but not in teased nerves to enable the assessment of isolated nerve fibers. In conclusion, BSSM gives accurate information of nerve morphology and combining the procedure with immunofluorescence it would be very useful to study the molecular nerve domain organization of the nerve fibers, and to study the molecular pathology of axon degeneration, or myelin disorders, or of any peripheral neuropathy, also to study demyelination diseases in the central nervous system.


Assuntos
Imunofluorescência/métodos , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Coloração pela Prata/métodos , Animais , Aquaporina 1/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Básica da Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Proteínas de Neurofilamentos/metabolismo , Ratos
4.
Prog Biophys Mol Biol ; 114(3): 137-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24556025

RESUMO

In metazoan cells during the interphase nuclear DNA is organized in supercoiled, topologically constrained loops anchored to a proteinaceous compartment or substructure commonly known as the nuclear matrix (NM). The DNA-NM interactions result from a thermodynamically-driven process leading to the necessary dissipation of structural stress along chromosomal DNA, otherwise the chromosomes would break into pieces. Such DNA-NM interactions define a nuclear higher-order structure that is independent of chromatin proteins. On the other hand, a metazoan cell no longer able to undergo mitosis is defined as post-mitotic and this condition indicates a terminally differentiated cell that may survive in such a state for indefinite time. The non-reversible nature of the post-mitotic state suggests a non-genetic basis for it since no spontaneous or induced mutations can revert it. Yet in individual cells the loss of proliferative potential has both a developmental and a stochastic component. Here we discuss evidence suggesting that the stability of the nuclear higher-order structure is the factor that links the stochastic and developmental components leading to the post-mitotic state.


Assuntos
Núcleo Celular/química , Núcleo Celular/metabolismo , Mitose , Aneuploidia , Animais , Humanos , Interfase , Neoplasias/genética , Neoplasias/patologia , Poliploidia
5.
Neuroreport ; 18(5): 447-50, 2007 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-17496801

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3R) are modulated by the second messenger IP3, which induces intracellular calcium release. Using immunohistochemical techniques, we show that the three isoforms are expressed in sciatic nerve. IP3R1 and IP3R2 are mainly present in the nucleus of Schwann cells. IP3R1 is also expressed in Schmidt-Lanterman incisures. IP3R3 is primarily localized at very high levels in nonmyelinating Schwann cells. Interestingly, the three isoforms are expressed at the nodes of Ranvier. IP3R1 is clustered at the node of Ranvier, in a distribution that is similar to the Nav1.6 sodium channels in the sciatic nerve. IP3R3 is present in the paranodal regions of the nodes. IP3R2 is concentrated in the vicinity of the node, and the outer Schwann cell cytoplasm similar to the Kv1.5 potassium channel.


Assuntos
Expressão Gênica/fisiologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Nós Neurofibrosos/metabolismo , Nervo Isquiático/citologia , Animais , Imuno-Histoquímica , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Canal de Sódio Disparado por Voltagem NAV1.6 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Wistar , Canais de Sódio/metabolismo
6.
Hepatology ; 37(4): 842-51, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12668977

RESUMO

Although enhanced phosphorylative activity can be a requisite for later DNA synthesis during liver regeneration (LR), mitochondrial generation of reactive oxygen species could lead to altered mitochondrial membrane permeability during the prereplicative phase of LR. Therefore, the role of mitochondrial permeability transition (MPT) was evaluated during rat LR, induced by either partial hepatectomy (PH) or after CCl(4) administration. Parameters indicative of mitochondrial function and membrane potentials, those of oxidative stress, and in vivo changes of the intramitochondrial pool of adenine nucleotides were determined. Twelve hours after PH, mitochondrial oxidative and phosphorylative activities and adenosine diphosphate (ADP) content were increased, reaching a maximal peak at 24 hours after surgery (maximal DNA synthesis). Parameters suggestive of oxidant stress were enhanced, but mitochondrial volume and membrane electrical potential remained unaltered. Interestingly, moderate mitochondrial swelling and depolarization were found at later post-PH times (72 hours). In CCl(4)-treated animals, it was found that an active liver cell necrosis delayed mitotic activity and mitochondrial uncoupled respiration. Starting 12 hours after CCl(4) intoxication, a drastic increase of inorganic phosphate occurred within swollen and strongly depolarized mitochondria, suggesting changes in the MPT. Despite expression of messenger RNA (mRNA) for mitochondrial transcription, factor A showed a similar time course in both experimental models. The so-called augmenter liver regeneration was found significantly elevated only in PH rats. In conclusion, onset of MPT could be associated with cell necrosis and inflammation after CCl(4) treatment, whereas this mitochondrial event could constitute a putative effector mechanism, through which growth or inflammatory factors inhibiting cell proliferation could initiate LR termination.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas de Ligação a DNA , Canais Iônicos/fisiologia , Regeneração Hepática/fisiologia , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais , Proteínas , Animais , Tetracloreto de Carbono/farmacologia , DNA/biossíntese , Substâncias de Crescimento/metabolismo , Hepatectomia/métodos , Fígado/efeitos dos fármacos , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Proteínas Nucleares/metabolismo , Oxirredução , Fosfatos/metabolismo , Ratos , Ratos Wistar , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA