Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Genome Biol ; 25(1): 123, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760655

RESUMO

BACKGROUND: Vision depends on the interplay between photoreceptor cells of the neural retina and the underlying retinal pigment epithelium (RPE). Most genes involved in inherited retinal diseases display specific spatiotemporal expression within these interconnected retinal components through the local recruitment of cis-regulatory elements (CREs) in 3D nuclear space. RESULTS: To understand the role of differential chromatin architecture in establishing tissue-specific expression at inherited retinal disease loci, we mapped genome-wide chromatin interactions using in situ Hi-C and H3K4me3 HiChIP on neural retina and RPE/choroid from human adult donor eyes. We observed chromatin looping between active promoters and 32,425 and 8060 candidate CREs in the neural retina and RPE/choroid, respectively. A comparative 3D genome analysis between these two retinal tissues revealed that 56% of 290 known inherited retinal disease genes were marked by differential chromatin interactions. One of these was ABCA4, which is implicated in the most common autosomal recessive inherited retinal disease. We zoomed in on retina- and RPE-specific cis-regulatory interactions at the ABCA4 locus using high-resolution UMI-4C. Integration with bulk and single-cell epigenomic datasets and in vivo enhancer assays in zebrafish revealed tissue-specific CREs interacting with ABCA4. CONCLUSIONS: Through comparative 3D genome mapping, based on genome-wide, promoter-centric, and locus-specific assays of human neural retina and RPE, we have shown that gene regulation at key inherited retinal disease loci is likely mediated by tissue-specific chromatin interactions. These findings do not only provide insight into tissue-specific regulatory landscapes at retinal disease loci, but also delineate the search space for non-coding genomic variation underlying unsolved inherited retinal diseases.


Assuntos
Cromatina , Retina , Doenças Retinianas , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Cromatina/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Retina/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Regiões Promotoras Genéticas , Loci Gênicos , Peixe-Zebra/genética , Sequências Reguladoras de Ácido Nucleico , Genoma Humano
2.
Nature ; 616(7957): 495-503, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37046085

RESUMO

Skates are cartilaginous fish whose body plan features enlarged wing-like pectoral fins, enabling them to thrive in benthic environments1,2. However, the molecular underpinnings of this unique trait remain unclear. Here we investigate the origin of this phenotypic innovation by developing the little skate Leucoraja erinacea as a genomically enabled model. Analysis of a high-quality chromosome-scale genome sequence for the little skate shows that it preserves many ancestral jawed vertebrate features compared with other sequenced genomes, including numerous ancient microchromosomes. Combining genome comparisons with extensive regulatory datasets in developing fins-including gene expression, chromatin occupancy and three-dimensional conformation-we find skate-specific genomic rearrangements that alter the three-dimensional regulatory landscape of genes that are involved in the planar cell polarity pathway. Functional inhibition of planar cell polarity signalling resulted in a reduction in anterior fin size, confirming that this pathway is a major contributor to batoid fin morphology. We also identified a fin-specific enhancer that interacts with several hoxa genes, consistent with the redeployment of hox gene expression in anterior pectoral fins, and confirmed its potential to activate transcription in the anterior fin using zebrafish reporter assays. Our findings underscore the central role of genome reorganization and regulatory variation in the evolution of phenotypes, shedding light on the molecular origin of an enigmatic trait.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Genoma , Genômica , Rajidae , Animais , Nadadeiras de Animais/anatomia & histologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Rajidae/anatomia & histologia , Rajidae/genética , Peixe-Zebra/genética , Genes Reporter/genética
3.
Data Brief ; 44: 108499, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35983130

RESUMO

Type II DNA topoisomerases relax topological stress by transiently gating DNA passage in a controlled cut-and-reseal mechanism that affects both DNA strands. Therefore, they are essential to overcome topological problems associated with DNA metabolism. Their aberrant activity results in the generation of DNA double-strand breaks, which can seriously compromise cell survival and genome integrity. Here, we profile the transcriptome of human-telomerase-immortalized retinal pigment epithelial 1 (RPE-1) cells when treated with merbarone, a drug that catalytically inhibits type II DNA topoisomerases. We performed RNA-Seq after 4 and 8 h of merbarone treatment and compared transcriptional profiles versus untreated samples. We report raw sequencing data together with lists of gene counts and differentially expressed genes.

4.
Cell Rep ; 35(2): 108977, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852840

RESUMO

Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.


Assuntos
DNA Topoisomerases Tipo II/genética , DNA Super-Helicoidal/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Proto-Oncogênicas c-fos/genética , RNA Polimerase II/genética , Transcrição Gênica , Linhagem Celular Transformada , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Regulação da Expressão Gênica , Genes Precoces , Humanos , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Polimerase II/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/enzimologia , Tiobarbitúricos/farmacologia , Inibidores da Topoisomerase II/farmacologia
5.
PLoS Comput Biol ; 17(1): e1007814, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465072

RESUMO

DNA topoisomerase II-ß (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.


Assuntos
Cromatina , DNA Topoisomerases Tipo II , Genoma/genética , Modelos Genéticos , Animais , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Genômica , Humanos , Células MCF-7 , Aprendizado de Máquina , Camundongos , Ligação Proteica , Timócitos
6.
Mol Plant Pathol ; 21(12): 1606-1619, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33029921

RESUMO

Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.


Assuntos
Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/efeitos da radiação , Solanum lycopersicum/microbiologia , Transcriptoma/efeitos da radiação , Proteínas de Bactérias/genética , Quimiotaxia/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Fotorreceptores Microbianos/genética , Folhas de Planta/microbiologia , Folhas de Planta/efeitos da radiação , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Virulência/efeitos da radiação
7.
Genes (Basel) ; 11(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847102

RESUMO

The role of three-dimensional genome organization as a critical regulator of gene expression has become increasingly clear over the last decade. Most of our understanding of this association comes from the study of long range chromatin interaction maps provided by Chromatin Conformation Capture-based techniques, which have greatly improved in recent years. Since these procedures are experimentally laborious and expensive, in silico prediction has emerged as an alternative strategy to generate virtual maps in cell types and conditions for which experimental data of chromatin interactions is not available. Several methods have been based on predictive models trained on one-dimensional (1D) sequencing features, yielding promising results. However, different approaches vary both in the way they model chromatin interactions and in the machine learning-based strategy they rely on, making it challenging to carry out performance comparison of existing methods. In this study, we use publicly available 1D sequencing signals to model cohesin-mediated chromatin interactions in two human cell lines and evaluate the prediction performance of six popular machine learning algorithms: decision trees, random forests, gradient boosting, support vector machines, multi-layer perceptron and deep learning. Our approach accurately predicts long-range interactions and reveals that gradient boosting significantly outperforms the other five methods, yielding accuracies of about 95%. We show that chromatin features in close genomic proximity to the anchors cover most of the predictive information, as has been previously reported. Moreover, we demonstrate that gradient boosting models trained with different subsets of chromatin features, unlike the other methods tested, are able to produce accurate predictions. In this regard, and besides architectural proteins, transcription factors are shown to be highly informative. Our study provides a framework for the systematic prediction of long-range chromatin interactions, identifies gradient boosting as the best suited algorithm for this task and highlights cell-type specific binding of transcription factors at the anchors as important determinants of chromatin wiring mediated by cohesin.


Assuntos
Algoritmos , Cromatina/metabolismo , Simulação por Computador , Regulação Leucêmica da Expressão Gênica , Genoma Humano , Aprendizado de Máquina Supervisionado , Cromatina/genética , Humanos , Células K562 , Máquina de Vetores de Suporte
8.
Nat Commun ; 11(1): 910, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060399

RESUMO

The ATM kinase is a master regulator of the DNA damage response to double-strand breaks (DSBs) and a well-established tumour suppressor whose loss is the cause of the neurodegenerative and cancer-prone syndrome Ataxia-Telangiectasia (A-T). A-T patients and Atm-/- mouse models are particularly predisposed to develop lymphoid cancers derived from deficient repair of RAG-induced DSBs during V(D)J recombination. Here, we unexpectedly find that specifically disturbing the repair of DSBs produced by DNA topoisomerase II (TOP2) by genetically removing the highly specialised repair enzyme TDP2 increases the incidence of thymic tumours in Atm-/- mice. Furthermore, we find that TOP2 strongly colocalizes with RAG, both genome-wide and at V(D)J recombination sites, resulting in an increased endogenous chromosomal fragility of these regions. Thus, our findings demonstrate a strong causal relationship between endogenous TOP2-induced DSBs and cancer development, confirming these lesions as major drivers of ATM-deficient lymphoid malignancies, and potentially other conditions and cancer types.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Topoisomerases Tipo II/metabolismo , Neoplasias do Timo/epidemiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Knockout , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Neoplasias do Timo/genética
9.
PLoS One ; 14(6): e0218815, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31237890

RESUMO

Multidrug resistance efflux pumps protect bacterial cells against a wide spectrum of antimicrobial compounds. PSPTO_0820 is a predicted multidrug transporter from the phytopathogenic bacterium Pseudomonas syringae pv. tomato DC3000. Orthologs of this protein are conserved within many Pseudomonas species that interact with plants. To study the potential role of PSPTO_0820 in plant-bacteria interaction, a mutant in this gene was isolated and characterized. In addition, with the aim to find the outer membrane channel for this efflux system, a mutant in PSPTO_4977, a TolC-like gene, was also analyzed. Both mutants were more susceptible to trans-cinnamic and chlorogenic acids and to the flavonoid (+)-catechin, when added to the culture medium. The expression level of both genes increased in the presence of (+)-catechin and, in the case of PSPTO_0820, also in response to trans-cinnamic acid. PSPTO_0820 and PSPTO_4977 mutants were unable to colonize tomato at high population levels. This work evidences the involvement of these two proteins in the resistance to plant antimicrobials, supporting also the importance of chlorogenic acid, trans-cinnamic acid, and (+)-catechin in the tomato plant defense response against P. syringae pv. tomato DC3000 infection.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Anti-Infecciosos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Genes Bacterianos , Interações entre Hospedeiro e Microrganismos/genética , Solanum lycopersicum/metabolismo , Mutação , Proteínas de Plantas/metabolismo , Virulência/genética
10.
Environ Microbiol ; 18(12): 4847-4861, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27234490

RESUMO

Recent scenarios of fresh produce contamination by human enteric pathogens have resulted in severe food-borne outbreaks, and a new paradigm has emerged stating that some human-associated bacteria can use plants as secondary hosts. As a consequence, there has been growing concern in the scientific community about these interactions that have not yet been elucidated. Since this is a relatively new area, there is a lack of strategies to address the problem of food-borne illnesses due to the ingestion of fruits and vegetables. In the present study, we performed specific genome annotations to train a supervised machine-learning model that allows for the identification of plant-associated bacteria with a precision of ∼93%. The application of our method to approximately 9500 genomes predicted several unknown interactions between well-known human pathogens and plants, and it also confirmed several cases for which evidence has been reported. We observed that factors involved in adhesion, the deconstruction of the plant cell wall and detoxifying activities were highlighted as the most predictive features. The application of our strategy to sequenced strains that are involved in food poisoning can be used as a primary screening tool to determine the possible causes of contaminations.


Assuntos
Bactérias/isolamento & purificação , Aprendizado de Máquina , Plantas/microbiologia , Doenças Transmitidas por Alimentos/microbiologia , Frutas/microbiologia , Humanos , Verduras/microbiologia
11.
PLoS One ; 10(8): e0136101, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313942

RESUMO

The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.


Assuntos
Genoma Bacteriano , Doenças das Plantas/genética , Pseudomonas syringae/genética , Locos de Características Quantitativas , Sequência de Bases , Dados de Sequência Molecular
12.
PLoS One ; 10(4): e0119317, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25867189

RESUMO

T346Hunter (Type Three, Four and Six secretion system Hunter) is a web-based tool for the identification and localisation of type III, type IV and type VI secretion systems (T3SS, T4SS and T6SS, respectively) clusters in bacterial genomes. Non-flagellar T3SS (NF-T3SS) and T6SS are complex molecular machines that deliver effector proteins from bacterial cells into the environment or into other eukaryotic or prokaryotic cells, with significant implications for pathogenesis of the strains encoding them. Meanwhile, T4SS is a more functionally diverse system, which is involved in not only effector translocation but also conjugation and DNA uptake/release. Development of control strategies against bacterial-mediated diseases requires genomic identification of the virulence arsenal of pathogenic bacteria, with T3SS, T4SS and T6SS being major determinants in this regard. Therefore, computational methods for systematic identification of these specialised machines are of particular interest. With the aim of facilitating this task, T346Hunter provides a user-friendly web-based tool for the prediction of T3SS, T4SS and T6SS clusters in newly sequenced bacterial genomes. After inspection of the available scientific literature, we constructed a database of hidden Markov model (HMM) protein profiles and sequences representing the various components of T3SS, T4SS and T6SS. T346Hunter performs searches of such a database against user-supplied bacterial sequences and localises enriched regions in any of these three types of secretion systems. Moreover, through the T346Hunter server, users can visualise the predicted clusters obtained for approximately 1700 bacterial chromosomes and plasmids. T346Hunter offers great help to researchers in advancing their understanding of the biological mechanisms in which these sophisticated molecular machines are involved. T346Hunter is freely available at http://bacterial-virulence-factors.cbgp.upm.es/T346Hunter.


Assuntos
Genoma Bacteriano , Internet , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Stand Genomic Sci ; 10: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685259

RESUMO

Pseudomonas fluorescens strain PICF7 is a native endophyte of olive roots. Previous studies have shown this motile, Gram-negative, non-sporulating bacterium is an effective biocontrol agent against the soil-borne fungus Verticillium dahliae, the causal agent of one of the most devastating diseases for olive (Olea europaea L.) cultivation. Here, we announce and describe the complete genome sequence of Pseudomonas fluorescens strain PICF7 consisting of a circular chromosome of 6,136,735 bp that encodes 5,567 protein-coding genes and 88 RNA-only encoding genes. Genome analysis revealed genes predicting factors such as secretion systems, siderophores, detoxifying compounds or volatile components. Further analysis of the genome sequence of PICF7 will help in gaining insights into biocontrol and endophytism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA