Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Neurology ; 103(7): e209801, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39288341

RESUMO

BACKGROUND AND OBJECTIVES: Vascular risk factors (VRFs) and cerebral small vessel disease (cSVD) are common in patients with Alzheimer disease (AD). It remains unclear whether this coexistence reflects shared risk factors or a mechanistic relationship and whether vascular and amyloid pathologies have independent or synergistic influence on subsequent AD pathophysiology in preclinical stages. We investigated links between VRFs, cSVD, and amyloid levels (Aß1-42) and their combined effect on downstream AD biomarkers, that is, CSF hyperphosphorylated tau (P-tau181), atrophy, and cognition. METHODS: This retrospective study included nondemented participants (Clinical Dementia Rating < 1) from the European Prevention of Alzheimer's Dementia (EPAD) cohort and assessed VRFs with the Framingham risk score (FRS) and cSVD features on MRI using visual scales and white matter hyperintensity volumes. After preliminary linear analysis, we used structural equation modeling (SEM) to create a "cSVD severity" latent variable and assess the direct and indirect effects of FRS and cSVD severity on Aß1-42, P-tau181, gray matter volume (baseline and longitudinal), and cognitive performance (baseline and longitudinal). RESULTS: A total cohort of 1,592 participants were evaluated (mean age = 65.5 ± 7.4 years; 56.16% F). We observed positive associations between FRS and all cSVD features (all p < 0.05) and a negative association between FRS and Aß1-42 (ß = -0.04 ± 0.01). All cSVD features were negatively associated with CSF Aß1-42 (all p < 0.05). Using SEM, the cSVD severity fully mediated the association between FRS and CSF Aß1-42 (indirect effect: ß = -0.03 ± 0.01), also when omitting vascular amyloid-related markers. We observed a significant indirect effect of cSVD severity on P-tau181 (indirect effect: ß = 0.12 ± 0.03), baseline and longitudinal gray matter volume (indirect effect: ß = -0.10 ± 0.03; ß = -0.12 ± 0.05), and baseline cognitive performance (indirect effect: ß = -0.16 ± 0.03) through CSF Aß1-42. DISCUSSION: In a large nondemented population, our findings suggest that cSVD is a mediator of the relationship between VRFs and CSF Aß1-42 and affects downstream neurodegeneration and cognitive impairment. We provide evidence of VRFs indirectly affecting the pathogenesis of AD, highlighting the importance of considering cSVD burden in memory clinics for AD risk evaluation and as an early window for intervention. These results stress the role of VRFs and cerebrovascular pathology as key biomarkers for accurate design of anti-amyloid clinical trials and offer new perspectives for patient stratification.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doenças de Pequenos Vasos Cerebrais , Fragmentos de Peptídeos , Proteínas tau , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Idoso , Fatores de Risco , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Estudos Retrospectivos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Doenças de Pequenos Vasos Cerebrais/patologia , Proteínas tau/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Atrofia/patologia
2.
Res Sq ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39108495

RESUMO

INTRODUCTION: We investigated how cerebrospinal fluid levels of synaptic proteins associate with memory function in normal cognition (CN) and mild cognitive impairment (MCI), and investigated the effect of amyloid positivity on these associations. METHODS: We included 242 CN (105(43%) abnormal amyloid), and 278 MCI individuals (183(66%) abnormal amyloid) from EMIF-AD MBD and ADNI. For 181 (EMIF-AD MBD) and 36 (ADNI) proteins with a synaptic annotation in SynGO, associations with word learning recall were analysed with linear models. RESULTS: Subsets of synaptic proteins showed lower levels with worse recall in preclinical AD (EMIF-AD MBD: 7, ADNI: 5 proteins, none overlapping), prodromal AD (EMIF-AD MBD only, 27 proteins) and non-AD MCI (EMIF-AD MBD: 1, ADNI: 7 proteins). The majority of these associations were specific to these groups. DISCUSSION: Synaptic disturbance-related memory impairment occurred very early in AD, indicating it may be relevant to develop therapies targeting the synapse early in the disease.

3.
Alzheimers Dement ; 20(10): 6722-6739, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39193893

RESUMO

INTRODUCTION: We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS: We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS: We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION: We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS: Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.


Assuntos
Doença de Alzheimer , Biomarcadores , Proteína 1 Semelhante à Quitinase-3 , Metilação de DNA , Proteínas de Neurofilamentos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Doença de Alzheimer/líquido cefalorraquidiano , Metilação de DNA/genética , Proteína 1 Semelhante à Quitinase-3/líquido cefalorraquidiano , Proteína 1 Semelhante à Quitinase-3/genética , Proteína 1 Semelhante à Quitinase-3/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/sangue , Feminino , Masculino , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/sangue , Idoso , Pessoa de Meia-Idade , Estudo de Associação Genômica Ampla
4.
Alzheimers Dement ; 20(10): 6682-6698, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39193899

RESUMO

INTRODUCTION: The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS: In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS: We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION: Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS: We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.


Assuntos
Disfunção Cognitiva , Metilação de DNA , Demência , Humanos , Metilação de DNA/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Masculino , Feminino , Idoso , Demência/genética , Demência/sangue , Demência/diagnóstico , Fatores de Risco , Aprendizado de Máquina , Estudos Transversais , Doença de Alzheimer/genética , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Estudos Prospectivos , Medição de Risco , Idoso de 80 Anos ou mais
5.
Alzheimers Dement ; 20(9): 6146-6160, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073684

RESUMO

INTRODUCTION: Unraveling how Alzheimer's disease (AD) genetic risk is related to neuropathological heterogeneity, and whether this occurs through specific biological pathways, is a key step toward precision medicine. METHODS: We computed pathway-specific genetic risk scores (GRSs) in non-demented individuals and investigated how AD risk variants predict cerebrospinal fluid (CSF) and imaging biomarkers reflecting AD pathology, cardiovascular, white matter integrity, and brain connectivity. RESULTS: CSF amyloidbeta and phosphorylated tau were related to most GRSs. Inflammatory pathways were associated with cerebrovascular disease, whereas quantitative measures of white matter lesion and microstructure integrity were predicted by clearance and migration pathways. Functional connectivity alterations were related to genetic variants involved in signal transduction and synaptic communication. DISCUSSION: This study reveals distinct genetic risk profiles in association with specific pathophysiological aspects in predementia stages of AD, unraveling the biological substrates of the heterogeneity of AD-associated endophenotypes and promoting a step forward in disease understanding and development of personalized therapies. HIGHLIGHTS: Polygenic risk for Alzheimer's disease encompasses six biological pathways that can be quantified with pathway-specific genetic risk scores, and differentially relate to cerebrospinal fluid and imaging biomarkers. Inflammatory pathways are mostly related to cerebrovascular burden. White matter health is associated with pathways of clearance and membrane integrity, whereas functional connectivity measures are related to signal transduction and synaptic communication pathways.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Endofenótipos , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Feminino , Masculino , Proteínas tau/líquido cefalorraquidiano , Idoso , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Predisposição Genética para Doença , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Substância Branca/patologia , Substância Branca/diagnóstico por imagem
6.
Alzheimers Dement ; 20(9): 6205-6220, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38970402

RESUMO

INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aß]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Hipocampo , Proteínas de Neurofilamentos , Neurogranina , Proteômica , Proteínas tau , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Biomarcadores/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Feminino , Masculino , Idoso , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Hipocampo/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano
7.
Fluids Barriers CNS ; 21(1): 58, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020361

RESUMO

BACKGROUND: Structural and functional changes of the choroid plexus (ChP) have been reported in Alzheimer's disease (AD). Nonetheless, the role of the ChP in the pathogenesis of AD remains largely unknown. We aim to unravel the relation between ChP functioning and core AD pathogenesis using a unique proteomic approach in mice and humans. METHODS: We used an APP knock-in mouse model, APPNL-G-F, exhibiting amyloid pathology, to study the association between AD brain pathology and protein changes in mouse ChP tissue and CSF using liquid chromatography mass spectrometry. Mouse proteomes were investigated at the age of 7 weeks (n = 5) and 40 weeks (n = 5). Results were compared with previously published human AD CSF proteomic data (n = 496) to identify key proteins and pathways associated with ChP changes in AD. RESULTS: ChP tissue proteome was dysregulated in APPNL-G-F mice relative to wild-type mice at both 7 and 40 weeks. At both ages, ChP tissue proteomic changes were associated with epithelial cells, mitochondria, protein modification, extracellular matrix and lipids. Nonetheless, some ChP tissue proteomic changes were different across the disease trajectory; pathways related to lysosomal function, endocytosis, protein formation, actin and complement were uniquely dysregulated at 7 weeks, while pathways associated with nervous system, immune system, protein degradation and vascular system were uniquely dysregulated at 40 weeks. CSF proteomics in both mice and humans showed similar ChP-related dysregulated pathways. CONCLUSIONS: Together, our findings support the hypothesis of ChP dysfunction in AD. These ChP changes were related to amyloid pathology. Therefore, the ChP could become a novel promising therapeutic target for AD.


Assuntos
Doença de Alzheimer , Plexo Corióideo , Modelos Animais de Doenças , Camundongos Transgênicos , Proteômica , Plexo Corióideo/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Animais , Humanos , Camundongos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Proteoma/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL
8.
Ann Clin Transl Neurol ; 11(6): 1541-1556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38757392

RESUMO

OBJECTIVE: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. METHODS: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid ß1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. RESULTS: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. INTERPRETATION: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.


Assuntos
Doença de Alzheimer , Doenças de Pequenos Vasos Cerebrais , Imagem de Tensor de Difusão , Substância Branca , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Feminino , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Idoso , Pessoa de Meia-Idade , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Estudos Prospectivos
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731955

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder, the early detection of which is crucial for timely intervention and enrollment in clinical trials. However, the preclinical diagnosis of Alzheimer's encounters difficulties with gold-standard methods. The current definitive diagnosis of Alzheimer's still relies on expensive instrumentation and post-mortem histological examinations. Here, we explore label-free Raman spectroscopy with machine learning as an alternative to preclinical Alzheimer's diagnosis. A special feature of this study is the inclusion of patient samples from different cohorts, sampled and measured in different years. To develop reliable classification models, partial least squares discriminant analysis in combination with variable selection methods identified discriminative molecules, including nucleic acids, amino acids, proteins, and carbohydrates such as taurine/hypotaurine and guanine, when applied to Raman spectra taken from dried samples of cerebrospinal fluid. The robustness of the model is remarkable, as the discriminative molecules could be identified in different cohorts and years. A unified model notably classifies preclinical Alzheimer's, which is particularly surprising because of Raman spectroscopy's high sensitivity regarding different measurement conditions. The presented results demonstrate the capability of Raman spectroscopy to detect preclinical Alzheimer's disease for the first time and offer invaluable opportunities for future clinical applications and diagnostic methods.


Assuntos
Doença de Alzheimer , Análise Espectral Raman , Análise Espectral Raman/métodos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Humanos , Aprendizado de Máquina , Masculino , Feminino , Biomarcadores/líquido cefalorraquidiano , Idoso , Diagnóstico Precoce
10.
Comput Biol Med ; 176: 108588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761503

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD: Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS: Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS: This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Lipidômica , Proteômica , Doença de Alzheimer/sangue , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/sangue , Disfunção Cognitiva/metabolismo , Humanos , Proteômica/métodos , Masculino , Idoso , Feminino , Lipidômica/métodos , Biomarcadores/sangue , Biomarcadores/metabolismo , Animais , Progressão da Doença , Aprendizado de Máquina , Idoso de 80 Anos ou mais
11.
Alzheimers Res Ther ; 16(1): 44, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413990

RESUMO

BACKGROUND: GOIZ ZAINDU ("caring early" in Basque) is a pilot study to adapt the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) methodology to the Basque population and evaluate the feasibility and adherence to a FINGER-like multidomain intervention program. Additional aims included the assessment of efficacy on cognition and data collection to design a large efficacy trial. METHOD: GOIZ ZAINDU is a 1-year, randomized, controlled trial of a multidomain intervention in persons aged 60+ years, with Cardiovascular Risk Factors, Aging and Dementia (CAIDE) risk score ≥ 6, no diagnosis of dementia, and below-than-expected performance in at least one of three cognitive screening tests. Randomization to a multidomain intervention (MD-Int) or regular health advice (RHA) was stratified by sex, age (>/≤ 75), and cognitive status (mild cognitive impairment (MCI)/normal cognition). MD-Int included cardiovascular risk factor control, nutritional counseling, physical activity, and cognitive training. The primary outcomes were retention rate and adherence to the intervention program. Exploratory cognitive outcomes included changes in the Neuropsychological Test Battery z-scores. Analyses were performed according to the intention to treat. RESULTS: One hundred twenty-five participants were recruited (mean age: 75.64 (± 6.46); 58% women). The MD-Int (n = 61) and RHA (n = 64) groups were balanced in terms of their demographics and cognition. Fifty-two (85%) participants from the RHA group and 56 (88%) from the MD-Int group completed the study. More than 70% of the participants had high overall adherence to the intervention activities. The risk of cognitive decline was higher in the RHA group than in the MD-Int group in terms of executive function (p =.019) and processing speed scores (p =.026). CONCLUSIONS: The GOIZ-ZAINDU study proved that the FINGER methodology is adaptable and feasible in a different socio-cultural environment. The exploratory efficacy results showed a lower risk of decline in executive function and processing speed in the intervention group. These results support the design of a large-scale efficacy trial. TRIAL REGISTRATION: GOIZ ZAINDU feasibility trial was approved and registered by the Euskadi Drug Research Ethics Committee (ID: PI2017134) on 23 January 2018. Retrospectively registered in ClinicalTrials.gov (NCT06163716) on 8 December 2023.


Assuntos
Disfunção Cognitiva , Demência , Idoso , Feminino , Humanos , Masculino , Cognição , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/epidemiologia , Demência/epidemiologia , Demência/prevenção & controle , Europa (Continente) , Estudos de Viabilidade , Estilo de Vida , Projetos Piloto , Idoso de 80 Anos ou mais
12.
Genome Med ; 15(1): 79, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794492

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) of Alzheimer's disease (AD) have identified several risk loci, but many remain unknown. Cerebrospinal fluid (CSF) biomarkers may aid in gene discovery and we previously demonstrated that six CSF biomarkers (ß-amyloid, total/phosphorylated tau, NfL, YKL-40, and neurogranin) cluster into five principal components (PC), each representing statistically independent biological processes. Here, we aimed to (1) identify common genetic variants associated with these CSF profiles, (2) assess the role of associated variants in AD pathophysiology, and (3) explore potential sex differences. METHODS: We performed GWAS for each of the five biomarker PCs in two multi-center studies (EMIF-AD and ADNI). In total, 973 participants (n = 205 controls, n = 546 mild cognitive impairment, n = 222 AD) were analyzed for 7,433,949 common SNPs and 19,511 protein-coding genes. Structural equation models tested whether biomarker PCs mediate genetic risk effects on AD, and stratified and interaction models probed for sex-specific effects. RESULTS: Five loci showed genome-wide significant association with CSF profiles, two were novel (rs145791381 [inflammation] and GRIN2D [synaptic functioning]) and three were previously described (APOE, TMEM106B, and CHI3L1). Follow-up analyses of the two novel signals in independent datasets only supported the GRIN2D locus, which contains several functionally interesting candidate genes. Mediation tests indicated that variants in APOE are associated with AD status via processes related to amyloid and tau pathology, while markers in TMEM106B and CHI3L1 are associated with AD only via neuronal injury/inflammation. Additionally, seven loci showed sex-specific associations with AD biomarkers. CONCLUSIONS: These results suggest that pathway and sex-specific analyses can improve our understanding of AD genetics and may contribute to precision medicine.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Proteínas tau/genética , Biomarcadores , Inflamação , Apolipoproteínas E/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética
13.
Alzheimers Res Ther ; 15(1): 130, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537656

RESUMO

BACKGROUND: There are few updated studies on the prevalence and management of Alzheimer's disease (AD), which could be underdiagnosed or undertreated. The COVID-19 pandemic may have worsened the deficiencies in the diagnosis and treatment of these patients. Electronic medical records (EMR) offer an opportunity to assess the impact and management of medical processes and contingencies in the population. OBJECTIVE: To estimate AD prevalence in Spain over a 6-year period, based on treated patients, according to usual clinical practice. Additionally, to describe the management of AD-treated patients and the evolution of that treatment during the 2020 COVID-19 pandemic. METHODS: Retrospective study using the Spanish IQVIA EMR database. Patients treated with donepezil, galantamine, rivastigmine, and/or memantine were included in the study. Annual AD prevalence (2015-2020) was estimated and extrapolated to the national population level. Most frequent treatments and involved specialties were described. To assess the effect of COVID-19, the incidence of new AD cases in 2020 was calculated and compared with newly diagnosed cases in 2019. RESULTS: Crude AD prevalence (2015-2020) was estimated at 760.5 per 100,000 inhabitants, and age-standardized prevalence (2020) was 664.6 (male 595.7, female 711.0). Monotherapy was the most frequent way to treat AD (86.2%), in comparison with dual therapy (13.8%); rivastigmine was the most prescribed treatment (37.3%), followed by memantine (36.4%) and donepezil (33.0%). Rivastigmine was also the most utilized medication in newly treated patients (46.7%), followed by donepezil (29.8%), although donepezil persistence was longer (22.5 vs. 20.6 months). Overall, donepezil 10 mg, rivastigmine 9.5 mg, and memantine 20 mg were the most prescribed presentations. The incidence rate of AD decreased from 148.1/100,000 (95% confidence interval [CI] 147.0-149.2) in 2019 to 118.4/100,000 (95% CI 117.5-119.4) in 2020. CONCLUSIONS: The obtained prevalence of AD-treated patients was consistent with previous face-to-face studies. In contrast with previous studies, rivastigmine, rather than donepezil, was the most frequent treatment. A decrease in the incidence of AD-treated patients was observed during 2020 in comparison with 2019, presumably due to the significant impact of the COVID-19 pandemic on both diagnosis and treatment. EMR databases emerge as valuable tools to monitor in real time the incidence and management of medical conditions in the population, as well as to assess the health impact of global contingencies and interventions.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , Masculino , Feminino , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/epidemiologia , Donepezila/uso terapêutico , Rivastigmina/uso terapêutico , Memantina/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Estudos Retrospectivos , Pandemias , Prevalência , Piperidinas/uso terapêutico , Fenilcarbamatos/uso terapêutico , Indanos/uso terapêutico , COVID-19/epidemiologia , Galantamina/uso terapêutico
14.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36790009

RESUMO

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Multiômica , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
15.
Alzheimers Dement ; 19(6): 2317-2331, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36464806

RESUMO

INTRODUCTION: Despite increasing evidence of a role of rare genetic variation in the risk of Alzheimer's disease (AD), limited attention has been paid to its contribution to AD-related biomarker traits indicative of AD-relevant pathophysiological processes. METHODS: We performed whole-exome gene-based rare-variant association studies (RVASs) of 17 AD-related traits on whole-exome sequencing (WES) data generated in the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) study (n = 450) and whole-genome sequencing (WGS) data from ADNI (n = 808). RESULTS: Mutation screening revealed a novel probably pathogenic mutation (PSEN1 p.Leu232Phe). Gene-based RVAS revealed the exome-wide significant contribution of rare coding variation in RBKS and OR7A10 to cognitive performance and protection against left hippocampal atrophy, respectively. DISCUSSION: The identification of these novel gene-trait associations offers new perspectives into the role of rare coding variation in the distinct pathophysiological processes culminating in AD, which may lead to identification of novel therapeutic and diagnostic targets.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Exoma/genética , Estudos de Associação Genética , Fenótipo , Biomarcadores
16.
Front Aging Neurosci ; 14: 1040001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523958

RESUMO

Background and objective: Blood-based biomarkers represent a promising approach to help identify early Alzheimer's disease (AD). Previous research has applied traditional machine learning (ML) to analyze plasma omics data and search for potential biomarkers, but the most modern ML methods based on deep learning has however been scarcely explored. In the current study, we aim to harness the power of state-of-the-art deep learning neural networks (NNs) to identify plasma proteins that predict amyloid, tau, and neurodegeneration (AT[N]) pathologies in AD. Methods: We measured 3,635 proteins using SOMAscan in 881 participants from the European Medical Information Framework for AD Multimodal Biomarker Discovery study (EMIF-AD MBD). Participants underwent measurements of brain amyloid ß (Aß) burden, phosphorylated tau (p-tau) burden, and total tau (t-tau) burden to determine their AT(N) statuses. We ranked proteins by their association with Aß, p-tau, t-tau, and AT(N), and fed the top 100 proteins along with age and apolipoprotein E (APOE) status into NN classifiers as input features to predict these four outcomes relevant to AD. We compared NN performance of using proteins, age, and APOE genotype with performance of using age and APOE status alone to identify protein panels that optimally improved the prediction over these main risk factors. Proteins that improved the prediction for each outcome were aggregated and nominated for pathway enrichment and protein-protein interaction enrichment analysis. Results: Age and APOE alone predicted Aß, p-tau, t-tau, and AT(N) burden with area under the curve (AUC) scores of 0.748, 0.662, 0.710, and 0.795. The addition of proteins significantly improved AUCs to 0.782, 0.674, 0.734, and 0.831, respectively. The identified proteins were enriched in five clusters of AD-associated pathways including human immunodeficiency virus 1 infection, p53 signaling pathway, and phosphoinositide-3-kinase-protein kinase B/Akt signaling pathway. Conclusion: Combined with age and APOE genotype, the proteins identified have the potential to serve as blood-based biomarkers for AD and await validation in future studies. While the NNs did not achieve better scores than the support vector machine model used in our previous study, their performances were likely limited by small sample size.

17.
Front Comput Neurosci ; 16: 840200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910452

RESUMO

Widespread access to emerging information and communication technologies (ICT) allows its use for the screening of diseases in the general population. At the initiative of the Spanish Confederation of Associations of Families of People with Alzheimer's disease and other dementias (CEAFA), a website (http://www.problemasmemoria.com) has been created that provides information about Alzheimer's disease and includes questionnaires to be completed by family or friends concerned about memory problems of a relative. A cross-sectional, randomized, multicenter study was performed to evaluate feasibility, validity, and user satisfaction with an electronic method of completion vs. the current method of paper-based questionnaires for clinically dementia screening completed by the informants: the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) and the Alzheimer's disease-8 screening test (AD8). A total of 111 pairs were recruited by seven memory clinics. Informants completed IQCODE and AD8 questionnaires both in their paper and electronic versions. The correlation between paper and electronic versions was significantly positive for IQCODE (r = 0.98; p < 0.001) and AD8 (r = 0.96; p < 0.001). The execution time did not differ significantly, and participants considered their use equally easy. This study shows that an electronic version of the IQCODE and AD8 questionnaires is suitable for its online use via the internet and achieves the same results as the traditional paper versions.

18.
Alzheimers Dement ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35698882

RESUMO

BACKGROUND: Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS: Individuals were classified based on CSF amyloid beta (Aß)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS: A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION: The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.

20.
Alzheimers Dement (Amst) ; 14(1): e12286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571963

RESUMO

Introduction: It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods: We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results: Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion: We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA