Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hemasphere ; 8(2): e45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38435427

RESUMO

Relapse remains a major challenge in the clinical management of acute myeloid leukemia (AML) and is driven by rare therapy-resistant leukemia stem cells (LSCs) that reside in specific bone marrow niches. Hypoxia signaling maintains cells in a quiescent and metabolically relaxed state, desensitizing them to chemotherapy. This suggests the hypothesis that hypoxia contributes to the chemoresistance of AML-LSCs and may represent a therapeutic target to sensitize AML-LSCs to chemotherapy. Here, we identify HIFhigh and HIFlow specific AML subgroups (inv(16)/t(8;21) and MLLr, respectively) and provide a comprehensive single-cell expression atlas of 119,000 AML cells and AML-LSCs in paired diagnostic-relapse samples from these molecular subgroups. The HIF/hypoxia pathway signature is attenuated in AML-LSCs compared with more differentiated AML cells but is more expressed than in healthy hematopoietic cells. Importantly, chemical inhibition of HIF cooperates with standard-of-care chemotherapy to impair AML growth and to substantially eliminate AML-LSCs in vitro and in vivo. These findings support the HIF pathway in the stem cell-driven drug resistance of AML and unravel avenues for combinatorial targeted and chemotherapy-based approaches to specifically eliminate AML-LSCs.

2.
EMBO Mol Med ; 16(1): 64-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177531

RESUMO

Chromosomal instability (CIN) lies at the core of cancer development leading to aneuploidy, chromosomal copy-number heterogeneity (chr-CNH) and ultimately, unfavorable clinical outcomes. Despite its ubiquity in cancer, the presence of CIN in childhood B-cell acute lymphoblastic leukemia (cB-ALL), the most frequent pediatric cancer showing high frequencies of aneuploidy, remains unknown. Here, we elucidate the presence of CIN in aneuploid cB-ALL subtypes using single-cell whole-genome sequencing of primary cB-ALL samples and by generating and functionally characterizing patient-derived xenograft models (cB-ALL-PDX). We report higher rates of CIN across aneuploid than in euploid cB-ALL that strongly correlate with intraclonal chr-CNH and overall survival in mice. This association was further supported by in silico mathematical modeling. Moreover, mass-spectrometry analyses of cB-ALL-PDX revealed a "CIN signature" enriched in mitotic-spindle regulatory pathways, which was confirmed by RNA-sequencing of a large cohort of cB-ALL samples. The link between the presence of CIN in aneuploid cB-ALL and disease progression opens new possibilities for patient stratification and offers a promising new avenue as a therapeutic target in cB-ALL treatment.


Assuntos
Aneuploidia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Animais , Camundongos , Instabilidade Cromossômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Progressão da Doença
3.
J Immunother Cancer ; 10(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564128

RESUMO

BACKGROUND: The dismal clinical outcome of relapsed/refractory (R/R) T cell acute lymphoblastic leukemia (T-ALL) highlights the need for innovative targeted therapies. Although chimeric antigen receptor (CAR)-engineered T cells have revolutionized the treatment of B cell malignancies, their clinical implementation in T-ALL is in its infancy. CD1a represents a safe target for cortical T-ALL (coT-ALL) patients, and fratricide-resistant CD1a-directed CAR T cells have been preclinically validated as an immunotherapeutic strategy for R/R coT-ALL. Nonetheless, T-ALL relapses are commonly very aggressive and hyperleukocytic, posing a challenge to recover sufficient non-leukemic effector T cells from leukapheresis in R/R T-ALL patients. METHODS: We carried out a comprehensive study using robust in vitro and in vivo assays comparing the efficacy of engineered T cells either expressing a second-generation CD1a-CAR or secreting CD1a x CD3 T cell-engaging Antibodies (CD1a-STAb). RESULTS: We show that CD1a-T cell engagers bind to cell surface expressed CD1a and CD3 and induce specific T cell activation. Recruitment of bystander T cells endows CD1a-STAbs with an enhanced in vitro cytotoxicity than CD1a-CAR T cells at lower effector:target ratios. CD1a-STAb T cells are as effective as CD1a-CAR T cells in cutting-edge in vivo T-ALL patient-derived xenograft models. CONCLUSIONS: Our data suggest that CD1a-STAb T cells could be an alternative to CD1a-CAR T cells in coT-ALL patients with aggressive and hyperleukocytic relapses with limited numbers of non-leukemic effector T cells.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Linfócitos T , Humanos , Imunoterapia Adotiva , Anticorpos , Recidiva
4.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36162920

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cells have emerged as a breakthrough treatment for relapse/refractory hematological tumors, showing impressive complete remission rates. However, around 50% of the patients relapse before 1-year post-treatment. T-cell 'fitness' is critical to prolong CAR-T persistence and activity. Allogeneic T cells from healthy donors are less dysfunctional or exhausted than autologous patient-derived T cells; in this context, Delta One T cells (DOTs), a recently described cellular product based on MHC/HLA-independent Vδ1+γδ T cells, represent a promising allogeneic platform. METHODS: Here we generated and preclinically validated, for the first time, 4-1BB-based CAR-DOTs directed against the interleukin-3α chain receptor (CD123), a target antigen widely expressed on acute myeloid leukemia (AML) blasts. RESULTS: CD123CAR-DOTs showed vigorous, superior to control DOTs, cytotoxicity against AML cell lines and primary samples both in vitro and in vivo, even on tumor rechallenge. CONCLUSIONS: Our results provide the proof-of-concept for a DOT-based next-generation allogeneic CAR-T therapy for AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Interleucinas , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Recidiva
5.
Mol Cancer Ther ; 21(10): 1499-1509, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35915983

RESUMO

T-cell bispecific antibodies (TCB) are engineered molecules that bind both the T-cell receptor and tumor-specific antigens. Epidermal growth factor receptor variant III (EGFRvIII) mutation is a common event in glioblastoma (GBM) and is characterized by the deletion of exons 2-7, resulting in a constitutively active receptor that promotes cell proliferation, angiogenesis, and invasion. EGFRvIII is expressed on the surface of tumor cells and is not expressed in normal tissues, making EGFRvIII an ideal neoantigen target for TCBs. We designed and developed a novel 2+1 EGFRvIII-TCB with optimal pharmacologic characteristics and potent antitumor activity. EGFRvIII-TCB showed specificity for EGFRvIII and promoted tumor cell killing as well as T-cell activation and cytokine secretion only in patient-derived models expressing EGFRvIII. Moreover, EGFRvIII-TCB promoted T-cell recruitment into intracranial tumors. EGFRvIII-TCB induced tumor regression in GBM animal models, including humanized orthotopic GBM patient-derived xenograft models. Our results warrant the clinical testing of EGFRvIII-TCB for the treatment of EGFRvIII-expressing GBMs.


Assuntos
Anticorpos Biespecíficos , Neoplasias Encefálicas , Glioblastoma , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Citocinas , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA