Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 888827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814014

RESUMO

To improve food production via fermentation with co-cultures of microorganisms (e.g., multiple lactic acid bacteria-LAB strains), one must fully understand their metabolism and interaction patterns in various conditions. For example, LAB can bring added quality to bread by releasing several bioactive compounds when adding soy flour to wheat flour, thus revealing the great potential for functional food development. In the present work, the fermentation of three soy and wheat flour mixtures is studied using single cultures and co-cultures of Lactobacillus plantarum and Lactobacillus casei. Bio-chemical processes often require a significant amount of time to obtain the optimal amount of final product; creating a mathematical model can gain important information and aids in the optimization of the process. Consequently, mathematical modeling is used to optimize the fermentation process by following these LAB's growth kinetics and viability. The present work uses both multiple regression and artificial neural networks (ANN) to obtain the necessary mathematical model, useful in both prediction and process optimization. The main objective is to find a model with optimal performances, evaluated using an ANOVA test. To validate each obtained model, the simulation results are compared with the experimental data.

2.
Biomolecules ; 10(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443391

RESUMO

Sourdough fermentation presents several advantageous effects in bread making, like improved nutritional quality and increased shelf life. Three types of experiments aimed to evaluate comparatively the efficiency of two Lactobacillus (Lb.) strains, Lb. plantarum ATCC 8014 and Lb. casei ATCC 393, to metabolize different white wheat flour and soybeans flour combinations to compare their efficiency, together with/without Saccharomyces cerevisiae on sourdough fermentation. For this purpose, the viability, pH, organic acids, and secondary metabolites production were investigated, together with the dynamic rheological properties of the sourdough. During sourdough fermentation, LAB presented higher growth, and the pH decreased significantly from above pH 6 at 0 h to values under 4 at 24 h for each experiment. Co-cultures of LAB and yeast produced a higher quantity of lactic acid than single cultures, especially in sourdough enriched with soy-flour. In general, sourdoughs displayed a stable, elastic-like behavior, and the incorporation of soy-flour conferred higher elasticity in comparison with sourdoughs without soy-flour. The higher elasticity of sourdoughs enriched with soy-flour can be attributed to the fact that through frozen storage, soy proteins have better water holding capacity. In conclusion, sourdough supplemented with 10% soy-flour had better rheological properties, increased lactic, acetic, and citric acid production.


Assuntos
Fermentação , Farinha/normas , Glycine max/química , Microbiologia Industrial/métodos , Lactobacillus/metabolismo , Saccharomyces cerevisiae/metabolismo , Elasticidade , Ácido Láctico/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA