Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 81: 12-19, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30975409

RESUMO

Our study evaluated the physiological responses to acute heat stress in rats via body temperature and tissue corticosterone levels, and investigated the relative tissue response to heat stress based on corticosterone. Body temperature of rats under 22 °C (control) and 42 °C for 30 (H30), 60 (H60) and 120 min (H120) was measured. Correspondingly, corticosterone was analyzed in 11 tissues (adrenal, brain, heart, kidney, liver, lung, leg muscle, blood, stomach, spleen and small intestine). Analysis of variance and correlations were conducted on body temperature and corticosterone levels. The receiver operating characteristic (ROC) analyzed the thermo-sensitivity via corticosterone. Body temperature of rats in H30, H60 and H120 groups were higher (P < 0.05) than the control. Compared to the control, corticosterone levels of heart, stomach and small intestine at H30, corticosterone levels in adrenal, leg muscle and stomach at H60, and corticosterone levels in adrenal, heart, lung, stomach and small intestine at H120 differed (P < 0.05). The corticosterone in lung tissue was an excellent indicator of acute heat stress, with an area under the curve (AUC) of 1.00 at H60 and H120. In order to improve the prediction of acute heat stress, models combining corticosterone levels of multiple tissues reached an AUC of 1.00 for H30, and the sensitivity increased to 100% for H60 and H120. In conclusion, changes in the patterns and thermosensitivity of corticosterone levels associated with the duration of heat stress across body tissues were evidenced. The single and multi-organizational corticosterone models serve as indicators for evaluating heat stress across different time periods.


Assuntos
Regulação da Temperatura Corporal , Corticosterona/metabolismo , Resposta ao Choque Térmico , Glândulas Suprarrenais , Animais , Encéfalo/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Temperatura Alta , Mucosa Intestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Ratos Sprague-Dawley , Baço/metabolismo
2.
Animals (Basel) ; 8(8)2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072590

RESUMO

Proxies for feed efficiency, such as blood-based indicators, applicable across heifers varying in genetic makeup and developmental state are needed. Assessments of blood analytes and performance were made in heifer calves and pregnant heifers. Residual feed intake, a measure of feed efficiency, was used to categorize each population of heifers as either efficient or inefficient. Efficient heifer calves had lower mean cell hemoglobin, greater lymphocyte count, and fewer segmented neutrophils at the end of the test compared to inefficient calves. Efficient pregnant heifers had greater counts of lymphocytes with fewer segmented neutrophils at the end than inefficient pregnant heifers. Efficient heifer calves exhibited higher specific immunoglobulin M than inefficient calves. Throughout the test, efficient heifer calves had elevated potassium and phosphorus, and reduced alkaline phosphatase (ALP) compared to inefficient heifers. Efficient pregnant heifers showed greater ALP, non-esterified fatty acids and creatinine, but lower cholesterol and globulin than inefficient pregnant heifers. Levels of red and white blood cells, creatine kinase, cholesterol, glucose, potassium and phosphorus were higher in heifer calves compared with pregnant heifers. There is potential for blood analytes as proxies for feed efficiency; however, it is necessary to consider the inherent associations with feed efficiency and heifers' developmental stage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA