Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Radiol ; 179: 111680, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39133989

RESUMO

OBJECTIVES: This study aims to demonstrate reduced iodine contrast media (CM) in routine abdominal CT scans in portal venous phase (PVP) using a photon-counting detector CT (PCD-CT) compared to total body weight (TBW) and kV-adapted CM injection protocols on a state-of-the-art energy-integrating detector CT (EID-CT) while maintaining sufficient image quality (IQ). MATERIALS AND METHODS: Consecutive contrast-enhanced abdominal PVP CT scans from an EID-CT (Nov 2022-March 2024) and a PCD-CT (Sep 2023-Dec 2023) were compared. CM parameters (total iodine load (TIL), iodine delivery rate (IDR) and dosing factor (DF)) were reported. An individualized acquisition and CM injection protocol based on TBW and kV was applied for the EID-CT and a TBW adapted CM injection protocol was used for the PCD-CT. Objective IQ was evaluated with mean attenuation (Hounsfield Units, HU), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)). Subjective IQ was assessed via a 5-point Likert scale by 2 expert readers based on diagnostic confidence. RESULTS: Based on 91 EID-CT scans and 102 PCD-CT scans a TIL reduction of 20.1 % was observed for PCD-CT. PCD-CT demonstrated significantly higher SNR (9.9 ± 1.7 vs. 9.1 ± 1.8, p < 0.001) and CNR (5.1 ± 1.7 vs. 4.3 ± 1.3, p < 0.001) compared to EID-CT. Subjective IQ assessment showed that all scans had sufficient diagnostic IQ. CONCLUSIONS: PCD-CT allows for CM reduction while providing higher SNR and CNR compared to EID-CT, using clinical individualized scan and CM injection protocols.

2.
Invest Radiol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38742928

RESUMO

OBJECTIVE: Photon-counting detector computed tomography (PCD-CT) enables spectral data acquisition of CT angiographies allowing for reconstruction of virtual monoenergetic images (VMIs) in routine practice. Specifically, it has potential to reduce the blooming artifacts associated with densely calcified plaques. However, calcium blooming and iodine attenuation are inversely affected by energy level (keV) of the VMIs, creating a challenge for contrast media (CM) injection protocol optimization. A pragmatic and simple rule for calcium-dependent CM injection protocols is investigated and proposed for VMI-based coronary CT angiography with PCD-CT. MATERIALS AND METHODS: A physiological circulation phantom with coronary vessels including calcified lesions (maximum CT value >700 HU) with a 50% diameter stenosis was injected into at iodine delivery rates (IDRs) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g I/s. Images were acquired using a first-generation dual-source PCD-CT and reconstructed at various VMI levels (between 45 and 190 keV). Iodine attenuation in the coronaries was measured at each IDR for each keV, and blooming artifacts from the calcified lesions were assessed including stenosis grading error (as % overestimation vs true lumen). The IDR to achieve 300 HU at each VMI level was then calculated and compared with stenosis grading accuracy to establish a general rule for CM injection protocols. RESULTS: Plaque blooming artifacts and intraluminal iodine attenuation decreased with increasing keV. Fixed windowing (representing absolute worst case) resulted in stenosis overestimation from 77% ± 4% at 45 keV to 5% ± 2% at 190 keV, whereas optimized windowing resulted in overestimation from 29% ± 3% at 45 keV to 4% ± 1% at 190 keV. The required IDR to achieve 300 HU showed a strong linear correlation to VMI energy (R2 = 0.98). Comparison of this linear plot versus stenosis grading error and blooming artifact demonstrated that multipliers of 1, 2, and 3 times the reference IDR for theoretical clinical regimes of no, moderate, and severe calcification density, respectively, can be proposed as a general rule. CONCLUSIONS: This study provides a proof-of-concept in an anthropomorphic phantom for a simple pragmatic adaptation of CM injection protocols in coronary CT angiography with PCD-CT. The 1-2-3 rule demonstrates the potential for reducing the effects of calcium blooming artifacts on overall image quality.

3.
Invest Radiol ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687025

RESUMO

OBJECTIVES: Dark-blood late gadolinium enhancement (DB-LGE) cardiac magnetic resonance has been proposed as an alternative to standard white-blood LGE (WB-LGE) imaging protocols to enhance scar-to-blood contrast without compromising scar-to-myocardium contrast. In practice, both DB and WB contrasts may have clinical utility, but acquiring both has the drawback of additional acquisition time. The aim of this study was to develop and evaluate a deep learning method to generate synthetic WB-LGE images from DB-LGE, allowing the assessment of both contrasts without additional scan time. MATERIALS AND METHODS: DB-LGE and WB-LGE data from 215 patients were used to train 2 types of unpaired image-to-image translation deep learning models, cycle-consistent generative adversarial network (CycleGAN) and contrastive unpaired translation, with 5 different loss function hyperparameter settings each. Initially, the best hyperparameter setting was determined for each model type based on the Fréchet inception distance and the visual assessment of expert readers. Then, the CycleGAN and contrastive unpaired translation models with the optimal hyperparameters were directly compared. Finally, with the best model chosen, the quantification of scar based on the synthetic WB-LGE images was compared with the truly acquired WB-LGE. RESULTS: The CycleGAN architecture for unpaired image-to-image translation was found to provide the most realistic synthetic WB-LGE images from DB-LGE images. The results showed that it was difficult for visual readers to distinguish if an image was true or synthetic (55% correctly classified). In addition, scar burden quantification with the synthetic data was highly correlated with the analysis of the truly acquired images. Bland-Altman analysis found a mean bias in percentage scar burden between the quantification of the real WB and synthetic white-blood images of 0.44% with limits of agreement from -10.85% to 11.74%. The mean image quality of the real WB images (3.53/5) was scored higher than the synthetic white-blood images (3.03), P = 0.009. CONCLUSIONS: This study proposed a CycleGAN model to generate synthetic WB-LGE from DB-LGE images to allow assessment of both image contrasts without additional scan time. This work represents a clinically focused assessment of synthetic medical images generated by artificial intelligence, a topic with significant potential for a multitude of applications. However, further evaluation is warranted before clinical adoption.

4.
Invest Radiol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526041

RESUMO

OBJECTIVES: Calcified plaques induce blooming artifacts in coronary computed tomography angiography (CCTA) potentially leading to inaccurate stenosis evaluation. Tungsten represents a high atomic number, experimental contrast agent with different physical properties than iodine. We explored the potential of a tungsten-based contrast agent for photon-counting detector (PCD) CCTA in heavily calcified coronary vessels. MATERIALS AND METHODS: A cardiovascular phantom exhibiting coronaries with calcified plaques was imaged on a first-generation dual-source PCD-CT. The coronaries with 3 different calcified plaques were filled with iodine and tungsten contrast media solutions equating to iodine and tungsten delivery rates (IDR and TDR) of 0.3, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, and 3.0 g/s, respectively. Electrocardiogram-triggered sequential acquisitions were performed in the spectral mode (QuantumPlus). Virtual monoenergetic images (VMIs) were reconstructed from 40 to 190 keV in 1 keV increments. Blooming artifacts and percentage error stenoses from calcified plaques were quantified, and attenuation characteristics of both contrast media were recorded. RESULTS: Blooming artifacts from calcified plaques were most pronounced at 40 keV (78%) and least pronounced at 190 keV (58%). Similarly, percentage error stenoses were highest at 40 keV (48%) and lowest at 190 keV (2%), respectively. Attenuation of iodine decreased monotonically in VMIs from low to high keV, with the strongest decrease from 40 keV to 100 keV (IDR of 2.5 g/s: 1279 HU at 40 keV, 187 HU at 100 kV, and 35 HU at 190 keV). The attenuation of tungsten, on the other hand, increased monotonically as a function of VMI energy, with the strongest increase between 40 and 100 keV (TDR of 2.5 g/s: 202 HU at 40 keV, 661 HU at 100 kV, and 717 HU at 190 keV). For each keV level, the relationship between attenuation and IDR/TDR could be described by linear regressions (R2 ≥ 0.88, P < 0.001). Specifically, attenuation increased linearly when increasing the delivery rate irrespective of keV level or contrast medium. Iodine exhibited the highest relative increase in attenuation values at lower keV levels when increasing the IDR. Conversely, for tungsten, the greatest relative increase in attenuation values occurred at higher keV levels when increasing the TDR. When high keV imaging is desirable to reduce blooming artifacts from calcified plaques, IDR has to be increased at higher keV levels to maintain diagnostic vessel attenuation (ie, 300 HU), whereas for tungsten, TDR can be kept constant or can be even reduced at high keV energy levels. CONCLUSIONS: Tungsten's attenuation characteristics in relation to VMI energy levels are reversed to those of iodine, with tungsten exhibiting high attenuation values at high keV levels and vice versa. Thus, tungsten shows promise for high keV imaging CCTA with PCD-CT as-in distinction to iodine-both high vessel attenuation and low blooming artifacts from calcified plaques can be achieved.

5.
Intensive Care Med Exp ; 12(1): 26, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451350

RESUMO

BACKGROUND: Coronary artery calcification (CAC) is associated with poor outcome in critically ill patients. A deterioration in cardiac conduction and loss of myocardial tissue could be an underlying cause. Vectorcardiography (VCG) and cardiac biomarkers provide insight into these underlying causes. The aim of this study was to investigate whether a high degree of CAC is associated with VCG-derived variables and biomarkers, including high-sensitivity troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). METHODS: Mechanically ventilated coronavirus-19 (COVID-19) patients with an available chest computed tomography (CT) and 12-lead electrocardiogram (ECG) were studied. CAC scores were determined using chest CT scans. Patients were categorized into 3 sex-specific tertiles: low, intermediate, and high CAC. Daily 12 leads-ECGs were converted to VCGs. Daily hs-cTnT and NT-proBNP levels were determined. Linear mixed-effects regression models examined the associations between CAC tertiles and VCG variables, and between CAC tertiles and hs-cTnT or NT-proBNP levels. RESULTS: In this study, 205 patients (73.2% men, median age 65 years [IQR 57.0; 71.0]) were included. Compared to the lowest CAC tertile, the highest CAC tertile had a larger QRS area at baseline (6.65 µVs larger [1.50; 11.81], p = 0.012), which decreased during admission (- 0.27 µVs per day [- 0.43; - 0.11], p = 0.001). Patients with the highest CAC tertile also had a longer QRS duration (12.02 ms longer [4.74; 19.30], p = 0.001), higher levels of log hs-cTnT (0.79 ng/L higher [0.40; 1.19], p < 0.001) and log NT-proBNP (0.83 pmol/L higher [0.30; 1.37], p = 0.002). CONCLUSION: Patients with a high degree of CAC had the largest QRS area and higher QRS amplitude, which decreased more over time when compared to patients with a low degree of CAC. These results suggest that CAC might contribute to loss of myocardial tissue during critical illness. These insights could improve risk stratification and prognostication of patients with critical illness.

6.
Sci Rep ; 14(1): 5395, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443457

RESUMO

Dark-blood late gadolinium enhancement (LGE) has been shown to improve the visualization and quantification of areas of ischemic scar compared to standard bright-blood LGE. Recently, the performance of various semi-automated quantification methods has been evaluated for the assessment of infarct size using both dark-blood LGE and conventional bright-blood LGE with histopathology as a reference standard. However, the impact of this sequence on different quantification strategies in vivo remains uncertain. In this study, various semi-automated scar quantification methods were evaluated for a range of different ischemic and non-ischemic pathologies encountered in clinical practice. A total of 62 patients referred for clinical cardiovascular magnetic resonance (CMR) were retrospectively included. All patients had a confirmed diagnosis of either ischemic heart disease (IHD; n = 21), dilated/non-ischemic cardiomyopathy (NICM; n = 21), or hypertrophic cardiomyopathy (HCM; n = 20) and underwent CMR on a 1.5 T scanner including both bright- and dark-blood LGE using a standard PSIR sequence. Both methods used identical sequence settings as per clinical protocol, apart from the inversion time parameter, which was set differently. All short-axis LGE images with scar were manually segmented for epicardial and endocardial borders. The extent of LGE was then measured visually by manual signal thresholding, and semi-automatically by signal thresholding using the standard deviation (SD) and the full width at half maximum (FWHM) methods. For all quantification methods in the IHD group, except the 6 SD method, dark-blood LGE detected significantly more enhancement compared to bright-blood LGE (p < 0.05 for all methods). For both bright-blood and dark-blood LGE, the 6 SD method correlated best with manual thresholding (16.9% vs. 17.1% and 20.1% vs. 20.4%, respectively). For the NICM group, no significant differences between LGE methods were found. For bright-blood LGE, the 5 SD method agreed best with manual thresholding (9.3% vs. 11.0%), while for dark-blood LGE the 4 SD method agreed best (12.6% vs. 11.5%). Similarly, for the HCM group no significant differences between LGE methods were found. For bright-blood LGE, the 6 SD method agreed best with manual thresholding (10.9% vs. 12.2%), while for dark-blood LGE the 5 SD method agreed best (13.2% vs. 11.5%). Semi-automated LGE quantification using dark-blood LGE images is feasible in both patients with ischemic and non-ischemic scar patterns. Given the advantage in detecting scar in patients with ischemic heart disease and no disadvantage in patients with non-ischemic scar, dark-blood LGE can be readily and widely adopted into clinical practice without compromising on quantification.


Assuntos
Cardiomiopatia Hipertrófica , Isquemia Miocárdica , Humanos , Meios de Contraste , Gadolínio , Cicatriz/diagnóstico por imagem , Estudos Retrospectivos , Miocárdio , Isquemia Miocárdica/diagnóstico por imagem , Espectroscopia de Ressonância Magnética
7.
Eur Radiol ; 34(7): 4494-4503, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38165429

RESUMO

OBJECTIVES: The aim of this study is to improve the reliability of subjective IQ assessment using a pairwise comparison (PC) method instead of a Likert scale method in abdominal CT scans. METHODS: Abdominal CT scans (single-center) were retrospectively selected between September 2019 and February 2020 in a prior study. Sample variance in IQ was obtained by adding artificial noise using dedicated reconstruction software, including reconstructions with filtered backprojection and varying iterative reconstruction strengths. Two datasets (each n = 50) were composed with either higher or lower IQ variation with the 25 original scans being part of both datasets. Using in-house developed software, six observers (five radiologists, one resident) rated both datasets via both the PC method (forcing observers to choose preferred scans out of pairs of scans resulting in a ranking) and a 5-point Likert scale. The PC method was optimized using a sorting algorithm to minimize necessary comparisons. The inter- and intraobserver agreements were assessed for both methods with the intraclass correlation coefficient (ICC). RESULTS: Twenty-five patients (mean age 61 years ± 15.5; 56% men) were evaluated. The ICC for interobserver agreement for the high-variation dataset increased from 0.665 (95%CI 0.396-0.814) to 0.785 (95%CI 0.676-0.867) when the PC method was used instead of a Likert scale. For the low-variation dataset, the ICC increased from 0.276 (95%CI 0.034-0.500) to 0.562 (95%CI 0.337-0.729). Intraobserver agreement increased for four out of six observers. CONCLUSION: The PC method is more reliable for subjective IQ assessment indicated by improved inter- and intraobserver agreement. CLINICAL RELEVANCE STATEMENT: This study shows that the pairwise comparison method is a more reliable method for subjective image quality assessment. Improved reliability is of key importance for optimization studies, validation of automatic image quality assessment algorithms, and training of AI algorithms. KEY POINTS: • Subjective assessment of diagnostic image quality via Likert scale has limited reliability. • A pairwise comparison method improves the inter- and intraobserver agreement. • The pairwise comparison method is more reliable for CT optimization studies.


Assuntos
Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Estudos Retrospectivos , Variações Dependentes do Observador , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Abdominal/métodos , Algoritmos , Software
8.
Invest Radiol ; 59(8): 577-582, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240647

RESUMO

BACKGROUND: Previous research on the necessity to reduce the viscosity of contrast media (CM) by either prewarming CM before injection during computed tomography (CT) or by using less concentrated CM has yielded conflicting results. In addition, there is limited evidence on patient comfort. OBJECTIVES: The aim of the study was to examine if prewarming CM, with varying CM concentrations, is superior to CM at room temperature, with respect to patient comfort and safety in CT. MATERIALS AND METHODS: All elective patients scheduled for contrast-enhanced CT scans at Maastricht University Medical Center+ between October 27, 2021 and October 31, 2022 were eligible for inclusion when a questionnaire evaluating patient comfort was completed. This 1-year period was divided into 4 intervals (4 groups): group 1 (370 mg I/mL, 37°C), group 2 (370 mg I/mL, room temperature), group 3 (300 mg I/mL, 37°C), and group 4 (300 mg I/mL, room temperature). All CT scans were performed using state of the art equipment (Siemens Healthineers; SOMATOM Force and SOMATOM Definition AS, Forchheim, Germany). Contrast media injections were performed using a dual-head power injector (Stellant; Bayer Healthcare, Berlin, Germany) and individualized to body weight and/or tube voltage, depending on the CM protocols. After the CT scan, patients completed a questionnaire covering the primary outcomes comfort, pain, and adverse events such as feelings of heat, nausea, vomiting, itchiness, urticaria, difficulty breathing, dizziness, goosebumps, or an odd taste. Technicians were asked to report any adverse events, including extravasation and allergic-like reactions. The secondary outcome involved attenuation (in Hounsfield unit, HU), which was evaluated by assessing the HU of the coronary arteries for vascular CT, and liver enhancement in portal venous CT. The Kruskal-Wallis test was used for continuous scale outcomes and χ 2 tests for examining adverse events. RESULTS: Results showed no significant differences examining comfort score ( P = 0.054), pain sensation ( P = 0.469), extravasation ( P = 0.542), or allergic-like reaction ( P = 0.253). Significant differences among the 4 groups were found with respect to heat sensation and dizziness ( P = 0.005 and P = 0.047, respectively), showing small effect sizes. All other adverse effects showed no significant results. No significant differences were observed in coronary attenuation among the 4 groups in coronary CT angiography ( P = 0.113). When analyzing attenuation in portal venous CT scans, significant differences were found among the 4 groups ( P = 0.008). CONCLUSIONS: Administrating prewarmed CM is nonsuperior compared with CM at room temperature in relation to patient comfort and safety, regardless of CM concentration. These findings suggest that prewarming CM before usage is unnecessary, which will improve the efficiency of daily clinical workflow and brings environmentally friendly benefits.


Assuntos
Meios de Contraste , Conforto do Paciente , Temperatura , Tomografia Computadorizada por Raios X , Humanos , Masculino , Meios de Contraste/efeitos adversos , Feminino , Pessoa de Meia-Idade , Idoso , Inquéritos e Questionários , Viscosidade , Adulto , Segurança do Paciente , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA