Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultraschall Med ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428463

RESUMO

PURPOSE: Since handheld ultrasound devices are becoming increasingly ubiquitous, objective criteria to determine image quality are needed. We therefore conducted a comparison of objective quality measures and clinical performance. MATERIAL AND METHODS: A comparison of handheld devices (Butterfly IQ+, Clarius HD, Clarius HD3, Philips Lumify, GE VScan Air) and workstations (GE Logiq E10, Toshiba Aplio 500) was performed using a phantom. As a comparison, clinical investigations were performed by two experienced ultrasonographers by measuring the resolution of anatomical structures in the liver, pancreas, and intestine in ten subjects. RESULTS: Axial full width at half maximum resolution (FWHM) of 100µm phantom pins at depths between one and twelve cm ranged from 0.6-1.9mm without correlation to pin depth. Lateral FWHM resolution ranged from 1.3-8.7mm and was positively correlated with depth (r=0.6). Axial and lateral resolution differed between devices (p<0.001) with the lowest median lateral resolution observed in the E10 (5.4mm) and the lowest axial resolution (1.6mm) for the IQ+ device. Although devices showed no significant differences in most clinical applications, ultrasonographers were able to differentiate a median of two additional layers in the wall of the sigmoid colon and one additional structure in segmental portal fields (p<0.05) using cartwheel devices. CONCLUSION: While handheld devices showed superior or similar performance in the phantom and routine measurements, workstations still provided superior clinical imaging and resolution of anatomical substructures, indicating a lack of objective measurements to evaluate clinical ultrasound devices.

3.
Surg Endosc ; 36(6): 4507-4517, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34708296

RESUMO

BACKGROUND: Endoscopic and laparoscopic electrosurgical devices (ED) are of great importance in modern medicine but can cause adverse events such as tissue injuries and burns from residual heat. While laparoscopic tools are well investigated, detailed insights about the temperature profile of endoscopic knives are lacking. Our aim is to investigate the temperature and the residual heat of laparoscopic and endoscopic monopolar instruments to increase the safety in handling ED. METHODS: An infrared camera was used to measure the temperature of laparoscopic and endoscopic instruments during energy application and to determine the cooling time to below 50 °C at a porcine stomach. Different power levels and cutting intervals were studied to investigate their impact on the temperature profile. RESULTS: During activation, the laparoscopic hook exceeded 120 °C regularly for an up to 10 mm shaft length. With regards to endoknives, only the Dual Tip Knife showed a shaft temperature of above 50 °C. The residual heat of the laparoscopic hook remained above 50 °C for at least 15 s after activation. Endoknives cooled to below 50 °C in 4 s. A higher power level and longer cutting duration significantly increased the shaft temperature and prolonged the cooling time (p < 0.001). CONCLUSION: Residual heat and maximum temperature during energy application depend strongly on the chosen effect and cutting duration. To avoid potential injuries, the user should not touch any tissue with the laparoscopic hook for at least 15 s and with the endoknives for at least 4 s after energy application. As the shaft also heats up to over 120 °C, the user should be careful to avoid tissue contact during activation with the shaft. These results should be strongly considered for safety reasons when handling monopolar ED.


Assuntos
Temperatura Alta , Laparoscopia , Animais , Dissecação , Eletrocirurgia , Humanos , Laparoscopia/métodos , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA