RESUMO
Long-term low-dose macrolide therapy is now widely used in the treatment of chronic respiratory diseases for its immune-modulating effects, although the antimicrobial properties of macrolides can also have collateral impacts on the gut microbiome. We investigated whether such treatment altered intestinal commensal microbiology and whether any such changes affected systemic immune and metabolic regulation. In healthy adults exposed to 4 weeks of low-dose erythromycin or azithromycin, as used clinically, we observed consistent shifts in gut microbiome composition, with a reduction in microbial capacity related to carbohydrate metabolism and short-chain fatty acid biosynthesis. These changes were accompanied by alterations in systemic biomarkers relating to immune (interleukin 5 [IL-5], IL-10, monocyte chemoattractant protein 1 [MCP-1]) and metabolic (serotonin [5-HT], C-peptide) homeostasis. Transplantation of erythromycin-exposed murine microbiota into germ-free mice demonstrated that changes in metabolic homeostasis and gastrointestinal motility, but not systemic immune regulation, resulted from changes in intestinal microbiology caused by macrolide treatment. Our findings highlight the potential for long-term low-dose macrolide therapy to influence host physiology via alteration of the gut microbiome. IMPORTANCE Long-term macrolide therapy is widely used in chronic respiratory diseases although its antibacterial activity can also affect the gut microbiota, a key regulator of host physiology. Macrolide-associated studies on the gut microbiota have been limited to short antibiotic courses and have not examined its consequences for host immune and metabolic regulation. This study revealed that long-term macrolides depleted keystone bacteria and impacted host regulation, mediated directly by macrolide activity or indirectly by alterations to the gut microbiota. Understanding these macrolide-associated mechanisms will contribute to identifying the risk of long-term exposure and highlights the importance of targeted therapy for maintenance of the gut microbiota.
Assuntos
Microbioma Gastrointestinal , Doenças Respiratórias , Animais , Camundongos , Macrolídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Eritromicina/farmacologia , Doenças Respiratórias/tratamento farmacológicoAssuntos
COVID-19 , Humanos , COVID-19/genética , Serotonina , SARS-CoV-2 , Trato Gastrointestinal , Expressão GênicaRESUMO
BACKGROUND: Specialized enterochromaffin (EC) cells within the mucosal lining of the gut synthesize and secrete almost all serotonin (5-hydroxytryptamine, 5-HT) in the body. Significantly lower amounts of 5-HT are made by other peripheral tissues and serotonergic neurons within the enteric nervous system (ENS). EC cells are in close proximity to 5-HT receptors in the ENS, and the role of 5-HT as a modulator of gut motility, particularly colonic motor complexes, has been well defined. However, the relative contribution of neuronal 5-HT to this process under resting and stimulus-evoked conditions is unclear. METHODS: In this study, we combined the use of the selective serotonin transporter (SERT) inhibitor, fluoxetine, with two models of mucosal 5-HT depletion-surgical removal of the mucosa and our Tph1Cre/ERT2 ; Rosa26DTA mouse line-to determine the relative contribution of neuronal and mucosal 5-HT to resting and distension-evoked colonic motility. KEY RESULTS: Fluoxetine significantly reduced the frequency of colonic migrating complexes (CMCs) in flat-sheet preparations with the mucosa present and in intact control Tph1-DTA colons in which EC cells were present. No such effect was observed in mucosa-free preparations or in intact Tph1-DTA preparations lacking EC cell 5-HT. CONCLUSIONS AND INFERENCES: We demonstrate that mucosal 5-HT release plays an important role in distension-evoked colonic motility, and that SERT inhibition no longer alters gut motility when EC cells are absent, thus demonstrating that ENS 5-HT does not play a role in regulating gut motility.
Assuntos
Motilidade Gastrointestinal , Serotonina , Animais , Colo , Células Enterocromafins , Fluoxetina/farmacologia , Motilidade Gastrointestinal/fisiologia , Mucosa Intestinal , Camundongos , Neurônios Serotoninérgicos , Serotonina/farmacologiaRESUMO
The gut microbiome exerts a considerable influence on human neurophysiology and mental health. Interactions between intestinal microbiology and host regulatory systems have now been implicated both in the development of psychiatric conditions and in the efficacy of many common therapies. With the growing acceptance of the role played by the gut microbiome in mental health outcomes, the focus of research is now beginning to shift from identifying relationships between intestinal microbiology and pathophysiology, and towards using this newfound insight to improve clinical outcomes. Here, we review recent advances in our understanding of gut microbiome-brain interactions, the mechanistic underpinnings of these relationships, and the ongoing challenge of distinguishing association and causation. We set out an overarching model of the evolution of microbiome-CNS interaction and examine how a growing knowledge of these complex systems can be used to determine disease susceptibility and reduce risk in a targeted manner.
Assuntos
Microbioma Gastrointestinal , Transtornos Mentais , Microbiota , Encéfalo/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Transtornos Mentais/microbiologia , Saúde Mental , Microbiota/fisiologiaAssuntos
Trânsito Gastrointestinal , Tato , Envelhecimento , Animais , Digestão , Humanos , Canais Iônicos/metabolismo , Mecanotransdução Celular , CamundongosRESUMO
Studies investigating whether there is a causative link between the gut microbiota and lifespan have largely been restricted to invertebrates or to mice with a reduced lifespan because of a genetic deficiency. We investigate the effect of early-life antibiotic exposure on otherwise healthy, normal chow-fed, wild-type mice, monitoring these mice for more than 700 days in comparison with untreated control mice. We demonstrate the emergence of two different low-diversity community types, post-antibiotic microbiota (PAM) I and PAM II, following antibiotic exposure. PAM II but not PAM I mice have impaired immunity, increased insulin resistance, and evidence of increased inflammaging in later life as well as a reduced lifespan. Our data suggest that differences in the composition of the gut microbiota following antibiotic exposure differentially affect host health and longevity in later life.
Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Longevidade/imunologia , Animais , Longevidade/efeitos dos fármacos , CamundongosRESUMO
OBJECTIVE: Hypothalamic melanocortin 4 receptors (MC4R) are a key regulator of energy homeostasis. Brain-penetrant MC4R agonists have failed, as concentrations required to suppress food intake also increase blood pressure. However, peripherally located MC4R may also mediate metabolic benefits of MC4R activation. Mc4r transcript is enriched in mouse enteroendocrine L cells and peripheral administration of the endogenous MC4R agonist, α-melanocyte stimulating hormone (α-MSH), triggers the release of the anorectic hormones Glucagon-like peptide-1 (GLP-1) and peptide tyrosine tyrosine (PYY) in mice. This study aimed to determine whether pathways linking MC4R and L-cell secretion exist in humans. DESIGN: GLP-1 and PYY levels were assessed in body mass index-matched individuals with or without loss-of-function MC4R mutations following an oral glucose tolerance test. Immunohistochemistry was performed on human intestinal sections to characterize the mucosal MC4R system. Static incubations with MC4R agonists were carried out on human intestinal epithelia, GLP-1 and PYY contents of secretion supernatants were assayed. RESULTS: Fasting PYY levels and oral glucose-induced GLP-1 secretion were reduced in humans carrying a total loss-of-function MC4R mutation. MC4R was localized to L cells and regulates GLP-1 and PYY secretion from ex vivo human intestine. α-MSH immunoreactivity in the human intestinal epithelia was predominantly localized to L cells. Glucose-sensitive mucosal pro-opiomelanocortin cells provide a local source of α-MSH that is essential for glucose-induced GLP-1 secretion in small intestine. CONCLUSION: Our findings describe a previously unidentified signaling nexus in the human gastrointestinal tract involving α-MSH release and MC4R activation on L cells in an autocrine and paracrine fashion. Outcomes from this study have direct implications for targeting mucosal MC4R to treat human metabolic disorders.
Assuntos
Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Peptídeo YY/metabolismo , Pró-Opiomelanocortina/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , alfa-MSH/metabolismo , Comunicação Autócrina , Glicemia/metabolismo , Estudos de Casos e Controles , Células Enteroendócrinas/efeitos dos fármacos , Glucose/administração & dosagem , Teste de Tolerância a Glucose , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mutação com Perda de Função , Comunicação Parácrina , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/genética , Via Secretória , Transdução de Sinais , Fatores de Tempo , alfa-MSH/farmacologiaRESUMO
BACKGROUND & AIMS: Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans. METHODS: We developed an inducible, EC cell-specific Tph1CreERT2/+ mouse, which was used to generate a reporter mouse line, Tph1-tdTom, and an EC cell-depleted line, Tph1-DTA. We examined EC cell distribution, morphology, and subpopulations in reporter mice. GI motility was measured in vivo and ex vivo in EC cell-depleted mice. Additionally, we evaluated 5-HT content in biopsy and plasma specimens from patients with idiopathic gastroparesis (IG). RESULTS: Tph1-tdTom mice showed EC cells that were heterogeneously distributed throughout the GI tract with the greatest abundance in the antrum and proximal colon. Two subpopulations of EC cells were identified in the gut: self-renewal cells located at the base of the crypt and mature cells observed in the villi. Tph1-DTA mice displayed delayed gastric emptying, total GI transit, and colonic transit. These gut motility alterations were reversed by exogenous provision of 5-HT. Patients with IG had a significant reduction of antral EC cell numbers and 5-HT content, which negatively correlated with gastric emptying rate. CONCLUSIONS: The Tph1CreERT2/+ mouse provides a powerful tool to study the functional roles of EC cells in the GI tract. Our findings suggest a new pathophysiologic mechanism of 5-HT deficiency in IG.
Assuntos
Esvaziamento Gástrico/genética , Trânsito Gastrointestinal/genética , Serotonina/deficiência , Animais , Linhagem Celular , Células Enterocromafins/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Triptofano Hidroxilase/metabolismoRESUMO
Glucagon is secreted by pancreatic α cells in response to hypoglycemia and increases hepatic glucose output through hepatic glucagon receptors (GCGRs). There is evidence supporting the notion of extrapancreatic glucagon but its source and physiological functions remain elusive. Intestinal tissue samples were obtained from patients undergoing surgical resection of cancer. Mass spectrometry analysis was used to detect glucagon from mucosal lysate. Static incubations of mucosal tissue were performed to assess glucagon secretory response. Glucagon concentration was quantitated using a highly specific sandwich enzyme-linked immunosorbent assay. A cholesterol uptake assay and an isolated murine colonic motility assay were used to assess the physiological functions of intestinal GCGRs. Fully processed glucagon was detected by mass spectrometry in human intestinal mucosal lysate. High glucose evoked significant glucagon secretion from human ileal tissue independent of sodium glucose cotransporter and KATP channels, contrasting glucose-induced glucagon-like peptide 1 (GLP-1) secretion. The GLP-1 receptor agonist Exendin-4 attenuated glucose-induced glucagon secretion from the human ileum. GCGR blockade significantly increased cholesterol uptake in human ileal crypt culture and markedly slowed ex vivo colonic motility. Our findings describe the human gut as a potential source of extrapancreatic glucagon and demonstrate a novel enteric glucagon/GCGR circuit with important physiological functions beyond glycemic regulation.
Assuntos
Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Colesterol/metabolismo , Estudos de Coortes , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
The intestinal epithelium senses nutritional and microbial stimuli using epithelial sensory enteroendocrine cells (EEC). EECs communicate nutritional information to the nervous system, but whether they also relay signals from intestinal microbes remains unknown. Using in vivo real-time measurements of EEC and nervous system activity in zebrafish, we discovered that the bacteria Edwardsiella tarda activate EECs through the receptor transient receptor potential ankyrin A1 (Trpa1) and increase intestinal motility. Microbial, pharmacological, or optogenetic activation of Trpa1+EECs directly stimulates vagal sensory ganglia and activates cholinergic enteric neurons by secreting the neurotransmitter 5-hydroxytryptamine (5-HT). A subset of indole derivatives of tryptophan catabolism produced by E. tarda and other gut microbes activates zebrafish EEC Trpa1 signaling. These catabolites also directly stimulate human and mouse Trpa1 and intestinal 5-HT secretion. These results establish a molecular pathway by which EECs regulate enteric and vagal neuronal pathways in response to microbial signals.
Assuntos
Edwardsiella tarda/metabolismo , Sistema Nervoso Entérico/metabolismo , Células Enteroendócrinas/fisiologia , Mucosa Intestinal/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Animais Geneticamente Modificados , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Entérico/citologia , Motilidade Gastrointestinal/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/inervação , Proteínas Proto-Oncogênicas c-ret/genética , Serotonina/metabolismo , Transdução de Sinais , Triptofano/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Serotonin (5-HT) has traditional roles as a key neurotransmitter in the central nervous system and as a regulatory hormone controlling a broad range of physiological functions. Perhaps the most classically-defined functions of 5-HT are centrally in the control of mood, sleep and anxiety and peripherally in the modulation of gastrointestinal motility. A more recently appreciated role for 5-HT has emerged, however, as an important metabolic hormone contributing to glucose homeostasis and adiposity, with a causal relationship existing between circulating 5-HT levels and metabolic diseases. Almost all peripheral 5-HT is derived from specialised enteroendocrine cells, called enterochromaffin (EC) cells, located throughout the length of the lining of the gastrointestinal tract. EC cells are important luminal sensory cells that can detect and respond to an array of ingested nutrients, as well as luminal gut microbiota and their associated metabolites. Intriguingly, the interaction between gut microbiota and EC cells is dynamic in nature and has strong implications for host physiology. In this review, we discuss the traditional and modern functions of 5-HT and highlight an emerging pathway by which gut microbiota influences host health. Serotonin, also known as 5-hydroxytryptamine (5-HT), is an important neurotransmitter, growth factor and hormone that mediates a range of physiological functions. In mammals, serotonin is synthesized from the essential amino acid tryptophan by the rate-limiting enzyme tryptophan hydroxylase (TPH), for which there are two isoforms expressed in distinct cell types throughout the body. Tph1 is mainly expressed by specialized gut endocrine cells known as enterochromaffin (EC) cells and by other non-neuronal cell types such as adipocytes (Walther et al., 2003). Tph2 is primarily expressed in neurons of the raphe nuclei of the brain stem and a subset of neurons in the enteric nervous system (ENS) (Yabut et al., 2019). As 5-HT cannot readily cross the blood-brain barrier, the central and peripheral pools of 5-HT are anatomically separated and as such, act in their own distinct manners (Martin et al., 2017c). In this review we discuss the peripheral roles of serotonin, with particular focus on the interaction of gut-derived serotonin with the gut microbiota, and address emerging evidence linking this relationship with host homeostasis.
Assuntos
Células Enterocromafins/metabolismo , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Glucose/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Serotonina/metabolismo , Adipócitos/enzimologia , Adipócitos/metabolismo , Animais , Sistema Nervoso Entérico/metabolismo , Células Enterocromafins/enzimologia , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/microbiologia , Homeostase , Humanos , Neurônios/enzimologia , Triptofano Hidroxilase/metabolismoRESUMO
BACKGROUND: Enterochromaffin (EC) cells are specialized enteroendocrine cells lining the gastrointestinal (GI) tract and the source of almost all serotonin (5-hydroxytryptamine; 5-HT) in the body. Gut-derived 5-HT has a plethora of physiological roles, including regulation of gastrointestinal motility, and has been implicated as a driver of obesity and metabolic disease. This is due to 5-HT influencing key metabolic processes, such as hepatic gluconeogenesis, adipose tissue lipolysis and hindering thermogenic capacity. Increased circulating 5-HT occurs in humans with obesity and type 2 diabetes. However, despite the known metabolic roles of gut-derived 5-HT, the mechanisms underlying the cellular-level change in EC cells under obesogenic conditions remains unknown. METHODS: We use a mouse model of diet-induced obesity (DIO) to identify the regional changes that occur in primary EC cells from the duodenum and colon. Transcriptional changes in the nutrient sensing profile of primary EC cells were assessed, and responses to nutrient stimuli in culture were determined by 5-HT ELISA. KEY RESULTS: We find that obesogenic conditions affect EC cells in a region-dependent manner. Duodenal EC cells from DIO mice have impaired sugar sensing even in the presence of increased 5-HT content per cell, while colonic EC cell numbers are significantly increased, but have unaltered nutrient sensing capacity. CONCLUSIONS & INFERENCES: Our findings from this study add novel insights into the mechanisms by which functional changes to EC cells occur at a cellular level, which may contribute to the altered circulating 5-HT seen with obesity and metabolic disease, and associated gastrointestinal disorders.
Assuntos
Dieta , Células Enterocromafins/metabolismo , Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Obesidade/metabolismo , Serotonina/metabolismo , Animais , Glicemia/metabolismo , Masculino , CamundongosRESUMO
The homoeostatic regulation of metabolism is highly complex and involves multiple inputs from both the nervous and endocrine systems. The gut is the largest endocrine organ in our body and synthesises and secretes over 20 different hormones from enteroendocrine cells that are dispersed throughout the gut epithelium. These hormones include GLP-1, PYY, GIP, serotonin, and CCK, each of whom play pivotal roles in maintaining energy balance and glucose homeostasis. Some are now the basis of several clinically used glucose-lowering and weight loss therapies. The environment in which these enteroendocrine cells exist is also complex, as they are exposed to numerous physiological inputs including ingested nutrients, circulating factors and metabolites produced from neighbouring gut microbiome. In this review, we examine the diverse means by which gut-derived hormones carry out their metabolic functions through their interactions with different metabolically important organs including the liver, pancreas, adipose tissue and brain. Furthermore, we discuss how nutrients and microbial metabolites affect gut hormone secretion and the mechanisms underlying these interactions.
Assuntos
Sistema Endócrino/metabolismo , Hormônios Gastrointestinais/metabolismo , Trato Gastrointestinal/metabolismo , Colecistocinina/metabolismo , Citocinas/metabolismo , Metabolismo Energético , Células Enteroendócrinas/metabolismo , Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Peptídeo YY/metabolismo , Serotonina/metabolismoRESUMO
The gut microbiome is an established regulator of aspects of host metabolism, such as glucose handling. Despite the known impacts of the gut microbiota on host glucose homeostasis, the underlying mechanisms are unknown. The gut microbiome is also a potent mediator of gut-derived serotonin synthesis, and this peripheral source of serotonin is itself a regulator of glucose homeostasis. Here, we determined whether the gut microbiome influences glucose homeostasis through effects on gut-derived serotonin. Using both pharmacological inhibition and genetic deletion of gut-derived serotonin synthesis, we find that the improvements in host glucose handling caused by antibiotic-induced changes in microbiota composition are dependent on the synthesis of peripheral serotonin.
Assuntos
Microbioma Gastrointestinal , Glucose/metabolismo , Homeostase , Serotonina/fisiologia , Animais , Antibacterianos/farmacologia , Área Sob a Curva , Glicemia/metabolismo , Deleção de Genes , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição AleatóriaRESUMO
The microbial community of the gut conveys significant benefits to host physiology. A clear relationship has now been established between gut bacteria and host metabolism in which microbial-mediated gut hormone release plays an important role. Within the gut lumen, bacteria produce a number of metabolites and contain structural components that act as signaling molecules to a number of cell types within the mucosa. Enteroendocrine cells within the mucosal lining of the gut synthesize and secrete a number of hormones including CCK, PYY, GLP-1, GIP, and 5-HT, which have regulatory roles in key metabolic processes such as insulin sensitivity, glucose tolerance, fat storage, and appetite. Release of these hormones can be influenced by the presence of bacteria and their metabolites within the gut and as such, microbial-mediated gut hormone release is an important component of microbial regulation of host metabolism. Dietary or pharmacological interventions which alter the gut microbiome therefore pose as potential therapeutics for the treatment of human metabolic disorders. This review aims to describe the complex interaction between intestinal microbiota and their metabolites and gut enteroendocrine cells, and highlight how the gut microbiome can influence host metabolism through the regulation of gut hormone release.
RESUMO
CONTEXT: The antidiabetic drug metformin causes weight loss, but the underlying mechanisms are unclear. Recent clinical studies show that metformin increases plasma levels of the anorectic gut hormone, peptide YY (PYY), but whether this is through a direct effect on the gut is unknown. OBJECTIVE: We hypothesized that exposure of human gut mucosal tissue to metformin would acutely trigger PYY secretion. DESIGN, SETTING, PARTICIPANTS, AND INTERVENTIONS: Mucosal tissue was prepared from 46 human colonic and 9 ileal samples obtained after surgical resection and ex vivo secretion assays were performed. Tissue was exposed to metformin, as well as a series of other compounds as part of our mechanistic studies, in static incubations. Supernatant was sampled after 15 minutes. MAIN OUTCOME MEASURES: PYY levels in supernatant, measured using ELISA. RESULTS: Metformin increased PYY secretion from both ileal (P < 0.05) and colonic (P < 0.001) epithelia. Both basal and metformin-induced PYY secretion were unchanged across body mass index or in tissues obtained from individuals with type 2 diabetes. Metformin-dependent PYY secretion was blocked by inhibitors of the plasma membrane monoamine transporter (PMAT) and the serotonin reuptake transporter (SERT), as well as by an inhibitor of AMP kinase (AMPK). CONCLUSIONS: This is a report of a direct action of metformin on the gut epithelium to trigger PYY secretion in humans, occurring via cell internalization through PMAT and SERT and intracellular activation of AMPK. Our results provide further support that the role of metformin in the treatment of metabolic syndrome has a gut-based component.
Assuntos
Hipoglicemiantes/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Metformina/farmacologia , Peptídeo YY/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Idoso , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Feminino , Humanos , Hipoglicemiantes/uso terapêutico , Íleo/citologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Masculino , Metformina/uso terapêutico , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Redução de Peso/efeitos dos fármacosRESUMO
Gut-derived serotonin (5-HT) is released from enterochromaffin (EC) cells in response to nutrient cues, and acts to slow gastric emptying and modulate gastric motility. Rodent studies also evidence a role for gut-derived 5-HT in the control of hepatic glucose production, lipolysis and thermogenesis, and in mediating diet-induced obesity. EC cell number and 5-HT content is increased in the small intestine of obese rodents and human, however, it is unknown whether EC cells respond directly to glucose in humans, and whether their capacity to release 5-HT is perturbed in obesity. We therefore investigated 5-HT release from human duodenal and colonic EC cells in response to glucose, sucrose, fructose and α-glucoside (αMG) in relation to body mass index (BMI). EC cells released 5-HT only in response to 100 and 300 mM glucose (duodenum) and 300 mM glucose (colon), independently of osmolarity. Duodenal, but not colonic, EC cells also released 5-HT in response to sucrose and αMG, but did not respond to fructose. 5-HT content was similar in all EC cells in males, and colonic EC cells in females, but 3 to 4-fold higher in duodenal EC cells from overweight females (p < 0.05 compared to lean, obese). Glucose-evoked 5-HT release was 3-fold higher in the duodenum of overweight females (p < 0.05, compared to obese), but absent here in overweight males. Our data demonstrate that primary human EC cells respond directly to dietary glucose cues, with regional differences in selectivity for other sugars. Augmented glucose-evoked 5-HT release from duodenal EC is a feature of overweight females, and may be an early determinant of obesity.
Assuntos
Peso Corporal , Carboidratos/farmacologia , Células Enterocromafins/efeitos dos fármacos , Trato Gastrointestinal/citologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Fatores SexuaisRESUMO
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo , Proteínas Musculares/metabolismo , Termogênese , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adrenérgicos/farmacologia , Animais , Calcineurina/metabolismo , Proteínas de Ligação ao Cálcio , Diferenciação Celular/efeitos dos fármacos , Temperatura Baixa , Feminino , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Metabolismo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regiões Promotoras Genéticas/genética , Proteolipídeos/genética , Proteolipídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismoRESUMO
BACKGROUND/OBJECTIVES: Evidence from animal studies highlights an important role for serotonin (5-HT), derived from gut enterochromaffin (EC) cells, in regulating hepatic glucose production, lipolysis and thermogenesis, and promoting obesity and dysglycemia. Evidence in humans is limited, although elevated plasma 5-HT concentrations are linked to obesity. SUBJECTS/METHODS: We assessed (i) plasma 5-HT concentrations before and during intraduodenal glucose infusion (4 kcal/min for 30 min) in non-diabetic obese (BMI 44 ± 4 kg/m2, N = 14) and control (BMI 24 ± 1 kg/m2, N = 10) subjects, (ii) functional activation of duodenal EC cells (immunodetection of phospho-extracellular related-kinase, pERK) in response to glucose, and in separate subjects, (iii) expression of tryptophan hydroxylase-1 (TPH1) in duodenum and colon (N = 39), and (iv) 5-HT content in primary EC cells from these regions (N = 85). RESULTS: Plasma 5-HT was twofold higher in obese than control responders prior to (P = 0.025), and during (iAUC, P = 0.009), intraduodenal glucose infusion, and related positively to BMI (R2 = 0.334, P = 0.003) and HbA1c (R2 = 0.508, P = 0.009). The density of EC cells in the duodenum was twofold higher at baseline in obese subjects than controls (P = 0.023), with twofold more EC cells activated by glucose infusion in the obese (EC cells co-expressing 5-HT and pERK, P = 0.001), while the 5-HT content of EC cells in duodenum and colon was similar; TPH1 expression was 1.4-fold higher in the duodenum of obese subjects (P = 0.044), and related positively to BMI (R2 = 0.310, P = 0.031). CONCLUSIONS: Human obesity is characterized by an increased capacity to produce and release 5-HT from the proximal small intestine, which is strongly linked to higher body mass, and glycemic control. Gut-derived 5-HT is likely to be an important driver of pathogenesis in human obesity and dysglycemia.