Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2312714120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38079548

RESUMO

Hydrofluoroolefins are being adopted as sustainable alternatives to long-lived fluorine- and chlorine-containing gases and are finding current or potential mass-market applications as refrigerants, among a myriad of other uses. Their olefinic bond affords relatively rapid reaction with hydroxyl radicals present in the atmosphere, leading to short lifetimes and proportionally small global warming potentials. However, this type of functionality also allows reaction with ozone, and whilst these reactions are slow, we show that the products of these reactions can be extremely long-lived. Our chamber measurements show that several industrially important hydrofluoroolefins produce CHF3 (fluoroform, HFC-23), a potent, long-lived greenhouse gas. When this process is accounted for in atmospheric chemical and transport modeling simulations, we find that the total radiative effect of certain compounds can be several times that of the direct radiative effect currently recommended by the World Meteorological Organization. Our supporting quantum chemical calculations indicate that a large range of exothermicity is exhibited in the initial stages of ozonolysis, which has a powerful influence on the CHF3 yield. Furthermore, we identify certain molecular configurations that preclude the formation of long-lived greenhouse gases. This demonstrates the importance of product quantification and ozonolysis kinetics in determining the overall environmental impact of hydrofluoroolefin emissions.

2.
Org Lett ; 25(45): 8083-8088, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37922494

RESUMO

Rhodium(II) catalyzes carbene transfer from trimethylsilyldiazomethane to arylmethyl thioethers, generating sulfonium ylides that undergo [2,3]-sigmatropic rearrangement, punching quaternary centers into aromatic rings. The reaction works well with naphthalene, indole, and benzofuran ring systems, but the reaction is unsuccessful with the monocyclic benzene homologue. For aryl thioethers, Rh2(OAc)4 gives good results. For alkyl thioethers, the yields improve with Rh2(cap)4. Surprisingly, thioesters and thiocarbamates are also competent substrates for the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA