Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2309131121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315852

RESUMO

Most of the nitrogen (N) accessible for life is trapped in dinitrogen (N2), the most stable atmospheric molecule. In order to be metabolized by living organisms, N2 has to be converted into biologically assimilable forms, so-called fixed N. Nowadays, nearly all the N-fixation is achieved through biological and anthropogenic processes. However, in early prebiotic environments of the Earth, N-fixation must have occurred via natural abiotic processes. One of the most invoked processes is electrical discharges, including from thunderstorms and lightning associated with volcanic eruptions. Despite the frequent occurrence of volcanic lightning during explosive eruptions and convincing laboratory experimentation, no evidence of substantial N-fixation has been found in any geological archive. Here, we report on the discovery of a significant amount of nitrate in volcanic deposits from Neogene caldera-forming eruptions, which are well correlated with the concentrations of species directly emitted by volcanoes (sulfur, chlorine). The multi-isotopic composition (δ18O, Δ17O) of the nitrates reveals that they originate from the atmospheric oxidation of nitrogen oxides formed by volcanic lightning. According to these first geological volcanic nitrate archive, we estimate that, on average, about 60 Tg of N can be fixed during a large explosive event. Our findings hint at a unique role potentially played by subaerial explosive eruptions in supplying essential ingredients for the emergence of life on Earth.

2.
Eur J Appl Physiol ; 123(9): 1895-1909, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37088821

RESUMO

PURPOSE: This study aimed to investigate the effect of whole-body cryotherapy (WBC), cold-water immersion (CWI) and passive recovery (PAS) on tennis recovery. METHODS: Thirteen competitive male tennis players completed three consecutive match-like tennis protocols, followed by recovery (WBC, CWI, PAS) in a crossover design. Five tennis drills and serves were performed using a ball machine to standardize the fatiguing protocol. Maximal voluntary contraction (MVC) peak torque, creatine kinase activity (CK), muscle soreness, ball accuracy and velocity together with voluntary activation, low- and high-frequency torque and EMG activity were recorded before each protocol and 24 h following the third protocol. RESULTS: MVC peak torque (- 7.7 ± 11.3%; p = 0.001) and the high- to low-frequency torque ratio (- 10.0 ± 25.8%; p < 0.05) decreased on Day 1 but returned to baseline on Day 2, Day 3 and Day 4 (p = 0.052, all p > 0.06). The CK activity slightly increased from 161.0 ± 100.2 to 226.0 ± 106.7 UA L-1 on Day 1 (p = 0.001) and stayed at this level (p = 0.016) across days with no differences between recovery interventions. Muscle soreness increased across days with PAS recovery (p = 0.005), while no main effect of time was neither observed with WBC nor CWI (all p > 0.292). The technical performance was maintained across protocols with WBC and PAS, while it increased for CWI on Day 3 vs Day 1 (p = 0.017). CONCLUSION: Our 1.5-h tennis protocol led to mild muscle damage, though neither the neuromuscular function nor the tennis performance was altered due to accumulated workload induced by consecutive tennis protocols. The muscle soreness resulting from tennis protocols was similarly alleviated by both CWI and WBC. TRIAL REGISTRATION: IRB No. 2017-A02255-48, 12/05/2017.


Assuntos
Mialgia , Tênis , Humanos , Masculino , Mialgia/terapia , Músculo Esquelético/fisiologia , Imersão , Crioterapia/métodos , Água , Temperatura Baixa
3.
Rapid Commun Mass Spectrom ; 31(1): 137-144, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27766703

RESUMO

RATIONALE: The O- and S-isotope compositions of sulfates can be used as key tracers of the fate and sink of sulfate in both terrestrial and extra-terrestrial environments. However, their application remains limited in those geological systems where sulfate occurs in low concentrations. Here we present a simple and reliable method to extract, purify and concentrate sulfate from natural samples. The method allows us to take into account the separation of nitrate, which is known to be an issue in O-isotope analysis. METHODS: The separation and concentration of sulfate from other anions in any aqueous solution are performed within a few hours via anion-exchange resin. The possible O- (δ18 O and Δ17 O) and S- (δ34 S, Δ33 S and Δ36 S) isotope exchanges, fractionations and/or contaminations are for the first time monitored during the whole procedure using initial O- and S-mass-dependent and mass-independent sulfate solutions. RESULTS: After elution in HCl, pure sulfate is fully retrieved and precipitated into BaSO4 , which is suitable for O- and S-isotopic measurements using established techniques. The analysis of retrieved barite presents no variation within 2σ uncertainties: ±0.5‰ and ±0.1‰ in O- (δ18 O, Δ17 O) and ±0.2‰, ±0.02‰ and ±0.09‰ in S- (δ34 S, Δ33 S and Δ36 S) isotope ratios, respectively. CONCLUSIONS: This study shows that the resin method for sulfate extraction and purification, in addition to being cheap, simple and quick, is applicable for the measurements of all O- and S-isotopic ratios in sulfates (including the Δ17 O, Δ33 S and Δ36 S values). Therefore, this method can be easily used for a high range of natural samples in which sulfate occurs in low concentration including aerosols, ice cores, sediments, volcanic deposits, (paleo)soils and rainwater, and thus it can be a key to our understanding of the sulfur cycle on Earth. Copyright © 2016 John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA