Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16201, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376765

RESUMO

Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU·[Formula: see text]L-1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Infecções por Lentivirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador/normas , Lentivirus/isolamento & purificação , Lentivirus/patogenicidade , Infecções por Lentivirus/virologia , Técnicas de Diagnóstico Molecular/normas , Sistemas Automatizados de Assistência Junto ao Leito , Saliva/virologia , Sensibilidade e Especificidade , Espectroscopia de Luz Próxima ao Infravermelho/normas
2.
Geophys Res Lett ; 43(24): 12333-12339, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28239205

RESUMO

The dissociative recombination of CaO+ ions with electrons has been studied in a flowing afterglow reactor. CaO+ was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar+ ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10-7 cm3 molecule-1 s-1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca+/Fe+ ratio is ~8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca+ ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers.

3.
J Phys Chem A ; 111(2): 306-20, 2007 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17214469

RESUMO

The atmospherically relevant chemistry generated by photolysis of I2/O3 mixtures has been studied at 298 K in the pressure range from 10 to 400 hPa by using a laboratory flash photolysis setup combining atomic resonance and molecular absorption spectroscopy. The temporal behaviors of I, I(2), IO, and OIO have been retrieved. Conventional kinetic methods and numerical modeling have been applied to investigate the IO self-reaction and the secondary chemistry. A pressure independent value of k(IO + IO) = (7.6 +/- 1.1) x 10(-11) cm(3) molecule-1 s(-1) has been determined. The pressure dependence of the branching ratios for the I + OIO and IOIO product channels in the IO + IO reaction have been determined and have values of 0.45 +/- 0.10 and 0.44 +/- 0.13 at 400 hPa, respectively. The branching ratios for the 2I + O(2) and I(2) + O(2) product channels are pressure independent with values of 0.09 +/- 0.06 and 0.05 +/- 0.03, respectively. The sensitivity analysis indicates that the isomer IOIO is more thermally stable than predicted by theoretical calculations. A reaction scheme comprising OIO polymerization steps has been shown to be consistent with the temporal behaviors recorded in this study. For simplicity, the rate coefficient has been assumed to be the same for each reaction (OIO)(n) + IO --> (OIO)(n+1), n = 1, 2, 3, 4. The lower limit obtained for this rate coefficient is (1.2 +/- 0.3) x 10(-10) cm(3) molecule(-1) s(-1) at 400 hPa. Evidence for the participation of IO in the polymerization mechanism also has been found. The rate coefficient for IO attachment to OIO and to small polymers has been determined to be larger than (5 +/- 2) x 10(-11) cm(3) molecule(-1) s(-1) at 400 hPa. These results provide supporting evidence for atmospheric particle formation induced by polymerization of iodine oxides.


Assuntos
Iodo/química , Oxigênio/química , Fotoquímica/métodos , Absorção , Físico-Química/métodos , Cinética , Modelos Químicos , Modelos Estatísticos , Modelos Teóricos , Óxidos/química , Fotólise , Pressão , Espectrofotometria/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-16387540

RESUMO

Optical multichannel detectors like photodiode arrays or CCD cameras combined with grating spectrometers are commonly used as detection systems in quantitative absorption spectroscopy. As a trade-off to broad spectral coverage, banded spectral features are sometimes recorded with insufficient spectral resolution and/or insufficiently fine detector binning. This renders the true physical spectrum of recorded intensities changed by instrumental and spectrum specific artefacts thus impeding comparability between results from different set-ups. In this work, it is demonstrated that in the case of a "well-behaved"--i.e. free of ro-vibronic structure--absorption band like the iodine monoxide IO(4<--0) transition, these effects can easily change the apparent peak absorption by up to 50%. Also deviations from the strict linearity (Beer-Lambert's law) between absorber concentration and apparent, i.e. pixelwise optical density occur. This can be critical in studies of chemical kinetics. It is shown that the observed non-linearity can cause errors of up to 50% in the determination of a second order rate coefficient for the IO self reaction. To overcome the problem, a consistent and rigorous integral approach for the treatment of intensity recordings is developed. Linearity between optical density and absorber concentration thereby is re-established. The method is validated using artificial test data as well as experimental data of the IO(4<--0) absorption transition, obtained in the context of I2/O3 photochemistry studies. The agreement is accurate to within +/-2% (test data) and +/-3% (experimental data) supporting the validity of the approach. Possible consequences for other spectroscopic work are indicated.


Assuntos
Compostos de Iodo/química , Dinâmica não Linear , Cinética , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA