Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Nutr ; 9: 790250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425788

RESUMO

Background: The pathogenesis of autism spectrum disorder (ASD) is under investigation and one of the main alterations relates to the metabolic and inflammatory system dysfunctions. Indeed, based on a possible deficit of omega-3 fatty acids (FAs) of patients with ASD and looking for an anti-inflammatory effect, dietary supplements with omega-3 fatty acids have been proposed. We aimed to evaluate differences in plasma and erythrocyte FA profiles and plasma cytokines in patients with infantile ASD after supplementation with docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids or placebo and both compared at baseline with a reference healthy group. Methods: A double-blind, randomized placebo-controlled intervention with DHA/EPA for 6 months was carried out in 54 children between 2 and 6 years diagnosed with ASD. They were selected and randomly assigned into two groups: 19 children received 800 mg/day of DHA and 25 mg/day of EPA, or placebo. In addition, another reference group of 59 healthy children of the same age was included. Plasma lipids and cytokines, and FA profiles in plasma and erythrocytes were measured at baseline and after 6 months of treatment in ASD children, and at baseline in the reference group. Results: There were no differences in demographic, anthropometric characteristics, and omega-3 intake between the healthy reference group and the ASD children at baseline. Children with ASD showed the higher plasma percentages of palmitic acid and total saturated FA and lower total omega-6 polyunsaturated FA (PUFA) compared with healthy children. An increased level of DHA and reduced EPA level in erythrocytes were detected in the ASD group vs. the reference group. After 6 months of treatment, the ASD group that received DHA enriched product significantly increased the plasma and erythrocyte percentages of DHA, but no differences were observed in the clinical test scores and other parameters as plasma cytokines between the two groups of ASD related to the intervention. Conclusion: Spanish children with ASD exhibit an appropriate omega-3 FA status in plasma and erythrocytes. Neither a clinical improvement of ASD children nor a better anti-inflammatory or fatty acid state has been found after an intervention with DHA/EPA for 6 months. So, the prescription of n-3 LC-PUFA and other dietary supplements in ASD should be only indicated after a confirmed alteration of FA metabolism or omega-3 LC-PUFA deficiency evaluated by specific erythrocyte FA. Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [NCT03620097].

2.
Nutrients ; 13(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34684552

RESUMO

Eating behavior problems are characteristic of children with autism spectrum disorders (ASD) with a highly restricted range of food choices, which may pose an associated risk of nutritional problems. Hence, detailed knowledge of the dietary patterns (DPs) and nutrient intakes of ASD patients is necessary to carry out intervention strategies if required. The present study aimed to determine the DPs and macro-and micronutrient intakes in a sample of Spanish preschool children with ASD compared to typically developing control children. Fifty-four children with ASD (two to six years of age) diagnosed with ASD according to the Diagnostic Manual-5 criteria), and a control group of 57 typically developing children of similar ages were recruited. A validated food frequency questionnaire was used, and the intake of energy and nutrients was estimated through three non-consecutive 24-h dietary registrations. DPs were assessed using principal component analysis and hierarchical clustering analysis. Children with ASD exhibited a DP characterized by high energy and fat intakes and a low intake of vegetables and fruits. Likewise, meat intake of any type, both lean and fatty, was associated with higher consumption of fish and dietary fat. Furthermore, the increased consumption of dairy products was associated with increased consumption of cereals and pasta. In addition, they had frequent consumption of manufactured products with poor nutritional quality, e.g., beverages, sweets, snacks and bakery products. The percentages of children with ASD complying with the adequacy of nutrient intakes were higher for energy, saturated fat, calcium, and vitamin C, and lower for iron, iodine, and vitamins of group B when compared with control children. In conclusion, this study emphasizes the need to assess the DPs and nutrient intakes of children with ASD to correct their alterations and discard some potential nutritional diseases.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Dieta/estatística & dados numéricos , Ingestão de Alimentos , Comportamento Alimentar , Estudos de Casos e Controles , Fenômenos Fisiológicos da Nutrição Infantil , Pré-Escolar , Inquéritos sobre Dietas , Feminino , Humanos , Masculino , Valor Nutritivo , Espanha
3.
Front Pediatr ; 9: 685310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34676183

RESUMO

The goal of this investigation was to determine whether there are alterations in DNA methylation patterns in children with autism spectrum disorder (ASD). Material and Methods: Controlled prospective observational case-control study. Within the ASD group, children were sub-classified based on the presence (AMR subgroup) or absence (ANMR subgroup) of neurodevelopmental regression during the first 2 years of life. We analyzed the global levels of DNA methylation, reflected in LINE-1, and the local DNA methylation pattern in two candidate genes, Neural Cell Adhesion Molecule (NCAM1) and Nerve Growth Factor (NGF) that, according to our previous studies, might be associated to an increased risk for ASD. For this purpose, we utilized blood samples from pediatric patients with ASD (n = 53) and their corresponding controls (n = 45). Results: We observed a slight decrease in methylation levels of LINE-1 in the ASD group, compared to the control group. One of the CpG in LINE-1 (GenBank accession no.X58075, nucleotide position 329) was the main responsible for such reduction, highly significant in the ASD subgroup of children with AMR (p < 0.05). Furthermore, we detected higher NCAM1 methylation levels in ASD children, compared to healthy children (p < 0.001). The data, moreover, showed higher NGF methylation levels in the AMR subgroup, compared to the control group and the ANMR subgroup. These results are consistent with our prior study, in which lower plasma levels of NCAM1 and higher levels of NGF were found in the ANMR subgroup, compared to the subgroup that comprised neurotypically developing children. Conclusions: We have provided new clues about the epigenetic changes that occur in ASD, and suggest two potential epigenetic biomarkers that would facilitate the diagnosis of the disorder. We similarly present with evidence of a clear differentiation in DNA methylation between the ASD subgroups, with or without mental regression.

4.
Front Psychiatry ; 12: 644324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841211

RESUMO

This study examined the presence of neurodevelopmental regression and its effects on the clinical manifestations and the severity of autism spectrum disorder (ASD) in a group of children with autism compared with those without neurodevelopmental regression at the time of initial classification and subsequently. Methods and Subjects: ASD patients were classified into two subgroups, neurodevelopmental regressive (AMR) and non-regressive (ANMR), using a questionnaire based on the Autism Diagnostic Interview-Revised test. The severity of ASD and neurodevelopment were assessed with the Childhood Autism Rating Scale Test-2, Strengths and Difficulties Questionnaire, and Pervasive Developmental Disorders Behavior Inventory Parent Ratings (PDDBI) and with the Battelle Developmental Inventory tests at the beginning of the study and after 24 months of follow-up. Fifty-two patients aged 2-6 years with ASD were included. Nineteen were classified with AMR, and 33 were classified with ANMR. Results: The AMR subgroup presented greater severity of autistic symptoms and higher autism scores. Additionally, they showed lower overall neurodevelopment. The AMR subgroup at 24 months had poorer scores on the Battelle Developmental Inventory test in the following areas: Total personal/social (p < 0.03), Total Motor (p < 0.04), Expressive (p < 0.01), and Battelle Total (p < 0.04). On the PDDBI test, the AMR subgroup had scores indicating significantly more severe ASD symptoms in the variables: ritual score (p < 0.038), social approach behaviors (p < 0.048), expressive language (p < 0.002), and autism score (p < 0.003). Conclusions: ASD patients exhibited a set of different neurological phenotypes. The AMR and ANMR subgroups presented different clinical manifestations and prognoses in terms of the severity of autistic symptoms and neurodevelopment.

5.
Ital J Pediatr ; 46(1): 19, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050998

RESUMO

BACKGROUND: The pathophysiological etiologies related with the development of Autism Spectrum Disorders (ASD) remain controversial. Different authors have studied neurotoxins such as mercury (Hg) and their relationship with ADS. The objective of this study was to assess the levels of Hg in hair in a group of ASD children (chronic exposure) and in urinary excretion (acute exposure), in comparison to a healthy group. METHODS: A case-control study was conducted in Spanish children. We compared 54 ASD children (aged 2-6) with no other associated pathology to a normally-developing control group (54 subjects). RESULTS: There were no differences in urine (p:0.631) and hair (p:1.000) samples percentages below the limits of detection between the control and the ASD groups, and also between patients in the regression ASD subgroup (AMR) (p:0.08) and the non-regression ASD subgroup (ANMR) (p:0.705). When the analysis was adjusted for age and sex, the differences between Hg levels maintained not significant. There were no correlations between Hg concentrations in the ASD group as a whole (p: 0.739), or when they were subdivided into ASD-AMR (p: 0.739) and ASD-ANMR (p: 0.363). CONCLUSIONS: The present study shows no evidence in our geographical area to support an association between mercury neurotoxicity and the etiopathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista/etiologia , Exposição Ambiental/efeitos adversos , Mercúrio/toxicidade , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/urina , Biomarcadores/urina , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Incidência , Masculino , Mercúrio/urina , Espanha/epidemiologia
6.
Nutrients ; 11(2)2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30764497

RESUMO

New microbiome sequencing technologies provide novel information about the potential interactions among intestinal microorganisms and the host in some neuropathologies as autism spectrum disorders (ASD). The microbiota⁻gut⁻brain axis is an emerging aspect in the generation of autistic behaviors; evidence from animal models suggests that intestinal microbial shifts may produce changes fitting the clinical picture of autism. The aim of the present study was to evaluate the fecal metagenomic profiles in children with ASD and compare them with healthy participants. This comparison allows us to ascertain how mental regression (an important variable in ASD) could influence the intestinal microbiota profile. For this reason, a subclassification in children with ASD by mental regression (AMR) and no mental regression (ANMR) phenotype was performed. The present report was a descriptive observational study. Forty-eight children aged 2⁻6 years with ASD were included: 30 with ANMR and 18 with AMR. In addition, a control group of 57 normally developing children was selected and matched to the ASD group by sex and age. Fecal samples were analyzed with a metagenomic approach using a next-generation sequencing platform. Several differences between children with ASD, compared with the healthy group, were detected. Namely, Actinobacteria and Proteobacteria at phylum level, as well as, Actinobacteria, Bacilli, Erysipelotrichi, and Gammaproteobacteria at class level were found at higher proportions in children with ASD. Additionally, Proteobacteria levels showed to be augmented exclusively in AMR children. Preliminary results, using a principal component analysis, showed differential patterns in children with ASD, ANMR and AMR, compared to healthy group, both for intestinal microbiota and food patterns. In this study, we report, higher levels of Actinobacteria, Proteobacteria and Bacilli, aside from Erysipelotrichi, and Gammaproteobacteria in children with ASD compared to healthy group. Furthermore, AMR children exhibited higher levels of Proteobacteria. Further analysis using these preliminary results and mixing metagenomic and other "omic" technologies are needed in larger cohorts of children with ASD to confirm these intestinal microbiota changes.


Assuntos
Transtorno do Espectro Autista/microbiologia , Bactérias/classificação , Microbioma Gastrointestinal , Bactérias/genética , Pré-Escolar , DNA Bacteriano/genética , Dieta , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Metagenômica
7.
Front Pediatr ; 6: 264, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30320048

RESUMO

Background: In the etiopathogenesis of autism spectrum disorder (ASD), it has been suggested that a proinflammatory condition, as well as an alteration in adhesion molecules in the early stages of neurodevelopment, may play a role in the pathophysiology of the disorder. This study set out to evaluate the plasma levels of certain inflammatory cytokines, adhesion molecules, and growth factors in a sample of pediatric patients with ASD and compare them to the levels in a control group of healthy children. Methods: Fifty-four children (45 males and nine females) aged 2-6, who were diagnosed with ASD, and a control group of 54 typically-developing children of similar ages were selected. The diagnosis of ASD was carried out in accordance with the DSM-5 criteria and the data obtained from a developmental semi-structured clinical interview and the ADOS evaluation test. Additional testing was carried out to identify the children's developmental level and severity of ASD symptomatology. Patients with ASD were further divided into two subgroups based on developmental parameters: ASD children with neurodevelopmental regression (AMR) and ASD children without neurodevelopmental regression (ANMR). Analyses of plasma molecules, such as cathepsin, IL1ß, IL6, IL8, MPO, RANTES, MCP, BDNF, PAI NCAM, sICAM, sVCAM and NGF, were performed. Results: Higher levels of NGF were observed in the ASD group compared with the levels in the control group (p < 0.05). However, in the analysis of the ASD subgroups, lower plasma levels of NCAM and higher levels of NGF were found in the group of ASD children without developmental regression compared to the levels in the group of typically-developing children. Conclusions: These results suggest differences that could be related to different pathophysiological mechanisms in ASD. There is not a specific profile for the expression of relevant plasma cytokines, adhesion molecules or growth factors in children with ASD compared with that in typically-developing children. However, in the ANMR and AMR subgroups, some of the adhesion molecules and neuronal growth factors show differences that may be related to synaptogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA