Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Antioxidants (Basel) ; 13(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539916

RESUMO

Hydrogen sulfide (H2S) and nitric oxide (NO) are long-known inhibitors of terminal oxidases in the respiratory chain. Yet, they exert pivotal signaling roles in physiological processes, and in several bacterial pathogens have been reported to confer resistance against oxidative stress, host immune responses, and antibiotics. Pseudomonas aeruginosa, an opportunistic pathogen causing life-threatening infections that are difficult to eradicate, has a highly branched respiratory chain including four terminal oxidases of the haem-copper type (aa3, cbb3-1, cbb3-2, and bo3) and one oxidase of the bd-type (cyanide-insensitive oxidase, CIO). As Escherichia coli bd-type oxidases have been shown to be H2S-insensitive and to readily recover their activity from NO inhibition, here we tested the effect of H2S and NO on CIO by performing oxygraphic measurements on membrane preparations from P. aeruginosa PAO1 and isogenic mutants depleted of CIO only or all other terminal oxidases except CIO. We show that O2 consumption by CIO is unaltered even in the presence of high levels of H2S, and that CIO expression is enhanced and supports bacterial growth under such stressful conditions. In addition, we report that CIO is reversibly inhibited by NO, while activity recovery after NO exhaustion is full and fast, suggesting a protective role of CIO under NO stress conditions. As P. aeruginosa is exposed to H2S and NO during infection, the tolerance of CIO towards these stressors agrees with the proposed role of CIO in P. aeruginosa virulence.

2.
BMC Genomics ; 25(1): 192, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373909

RESUMO

BACKGROUND: Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS: De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS: The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.


Assuntos
Biomphalaria , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni/genética , Biomphalaria/genética , Transcriptoma , Genômica , Quênia
3.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352462

RESUMO

As symbionts of animals, microbial eukaryotes benefit and harm their hosts in myriad ways. A model microeukaryote (Capsaspora owczarzaki) is a symbiont of Biomphalaria glabrata snails and may prevent transmission of parasitic schistosomes from snails to humans. However, it is unclear which host factors determine Capsaspora's ability to colonize snails. Here, we discovered that Capsaspora forms multicellular aggregates when exposed to snail hemolymph. We identified a molecular cue for aggregation: a hemolymph-derived phosphatidylcholine, which becomes elevated in schistosome-infected snails. Therefore, Capsaspora aggregation may be a response to the physiological state of its host, and it may determine its ability to colonize snails and exclude parasitic schistosomes. Furthermore, Capsaspora is an evolutionary model organism whose aggregation may be ancestral to animals. This discovery, that a prevalent lipid induces Capsaspora multicellularity, suggests that this aggregation phenotype may be ancient. Additionally, the specific lipid will be a useful tool for further aggregation studies.

4.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279276

RESUMO

The terminal oxidases of bacterial aerobic respiratory chains are redox-active electrogenic enzymes that catalyze the four-electron reduction of O2 to 2H2O taking out electrons from quinol or cytochrome c. Living bacteria often deal with carbon monoxide (CO) which can act as both a signaling molecule and a poison. Bacterial terminal oxidases contain hemes; therefore, they are potential targets for CO. However, our knowledge of this issue is limited and contradictory. Here, we investigated the effect of CO on the cell growth and aerobic respiration of three different Escherichia coli mutants, each expressing only one terminal quinol oxidase: cytochrome bd-I, cytochrome bd-II, or cytochrome bo3. We found that following the addition of CO to bd-I-only cells, a minimal effect on growth was observed, whereas the growth of both bd-II-only and bo3-only strains was severely impaired. Consistently, the degree of resistance of aerobic respiration of bd-I-only cells to CO is high, as opposed to high CO sensitivity displayed by bd-II-only and bo3-only cells consuming O2. Such a difference between the oxidases in sensitivity to CO was also observed with isolated membranes of the mutants. Accordingly, O2 consumption of wild-type cells showed relatively low CO sensitivity under conditions favoring the expression of a bd-type oxidase.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Monóxido de Carbono/farmacologia , Monóxido de Carbono/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Citocromos/genética , Citocromos/metabolismo , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Respiração
5.
J Transcult Nurs ; 35(2): 142-150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38152995

RESUMO

INTRODUCTION: The Vietnamese American (VA) population is projected to grow to 3.9 million by 2030. This demographic shift could affect health care cost as VAs have greater susceptibility for type 2 diabetes mellitus (T2DM). Few studies have explored diabetes self-management (DSM) among VAs. The aim of this study was to explore and describe how VAs with T2DM perceive diabetes and DSM practices. METHOD: A focused ethnographic design, using semi-structured interviews and participant observation, was used to understand DSM among VAs. RESULTS: The following four themes emerged: (a) defining diabetes and its etiology, (b) body awareness as a way of managing diabetes, (c) maintaining strength after being diagnosed with diabetes, and (d) navigating sources of information regarding diabetes. DISCUSSION: The study findings suggest that DSM is a complex and recursive process, with integrations of cultural practices and influences from the environment. These findings can help the development of culturally tailored interventions to assist with DSM.


Assuntos
Diabetes Mellitus Tipo 2 , Autogestão , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Asiático , Comportamentos Relacionados com a Saúde , Antropologia Cultural
6.
J Parasitol ; 109(6): 633-637, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38151047

RESUMO

The indigenous North American mammalian schistosome Heterobilharzia americana has recently attracted attention for causing outbreaks in dogs in states outside of its southeastern U.S. distribution. Although H. americana has yet to be reported in New Mexico, we examined 2 New Mexico isolates of Galba snails to determine their susceptibility to experimental infection with an isolate of H. americana from Utah. One of the Galba isolates from the Rio Grande bosque in the Albuquerque suburb of Corrales was identified as Galba humilis, and like specimens of the same taxon from Utah, proved susceptible to H. americana (27.6% of exposed surviving snails positive). The second Galba isolate sourced from the northern mountains of New Mexico, which surprisingly was revealed to be Galba schirazensis based on cytochrome c oxidase 1, 16S rRNA, and the internal transcribed spacer 2 markers, was also susceptible to H. americana (56.3% of exposed surviving field-derived snails and 46.4% first generation [F1] snails positive). This is the first report of the latter snail being a compatible snail host for H. americana. As G. schirazensis has a wide, albeit spotty, distribution and is considered an invasive species, it provides yet another opportunity for H. americana to expand its known range, potentially including the state of New Mexico as well.


Assuntos
Schistosomatidae , Caramujos , Cães , Animais , New Mexico/epidemiologia , RNA Ribossômico 16S/genética , Caramujos/genética , Schistosomatidae/genética , Schistosoma , Mamíferos/genética
7.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961413

RESUMO

Background: Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). Results: De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~944.2 Mb (6732 fragments, N50=1.067 Mb), comprising 23,598 genes (BUSCO=93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes were seen in African compared to South American lineages. Conclusions: The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.

8.
Am J Trop Med Hyg ; 109(4): 811-819, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37580035

RESUMO

To provide information to guide considerations of declaring interruption of transmission of human schistosomiasis due to Schistosoma mansoni on St. Lucia, we undertook an island-wide survey in June-July 2022 to determine the presence of Biomphalaria snails, the intermediate hosts of S. mansoni, and their infection status. Snail surveys were carried out at 58 habitats to determine presence of Biomphalaria snails followed by examination of the collected snails for evidence of infection with S. mansoni. Furthermore, water samples were collected at the snail habitats and screened for presence of S. mansoni DNA using an eDNA approach. We found B. glabrata present in one habitat (Cul de Sac) where it was abundant. Specimens provisionally identified as Biomphalaria kuhniana were recovered from 10 habitats. None of the Biomphalaria specimens recovered were positive for S. mansoni. None of the eDNA water samples screened were positive for S. mansoni. Experimental exposures of both field-derived and laboratory-reared St. Lucian B. glabrata and B. kuhniana to Puerto Rican and Kenyan-derived S. mansoni strains revealed B. glabrata to be susceptible to both and B. kuhniana proved refractory from histological and snail shedding results. We conclude, given the current rarity of B. glabrata on the island and lack of evidence for the presence of S. mansoni, that transmission is unlikely to be ongoing. Coupled with negative results from recent human serological surveys, and implementation of improved sanitation and provision of safe water supplies, St. Lucia should be considered a candidate for declaration of interruption of human schistosomiasis transmission.


Assuntos
Biomphalaria , Esquistossomose mansoni , Esquistossomose , Animais , Humanos , Schistosoma mansoni , Quênia , Santa Lúcia , Caramujos , Esquistossomose mansoni/epidemiologia
9.
J Inorg Biochem ; 247: 112341, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515940

RESUMO

Carbon monoxide (CO) plays a multifaceted role in the physiology of organisms, from poison to signaling molecule. Heme proteins, including terminal oxidases, are plausible CO targets. Three quinol oxidases terminate the branched aerobic respiratory chain of Escherichia coli. These are the heme­copper cytochrome bo3 and two copper-lacking bd-type cytochromes, bd-I and bd-II. All three enzymes generate a proton motive force during the four-electron oxygen reduction reaction that is used for ATP production. The bd-type oxidases also contribute to mechanisms of bacterial defense against various types of stresses. Here we report that in E. coli cells, at the enzyme concentrations tested, cytochrome bd-I is much more resistant to inhibition by CO than cytochrome bd-II and cytochrome bo3. The apparent half-maximal inhibitory concentration values, IC50, for inhibition of O2 consumption of the membrane-bound bd-II and bo3 oxidases by CO at ~150 µM O2 were estimated to be 187.1 ± 11.1 and 183.3 ± 13.5 µM CO, respectively. Under the same conditions, the maximum inhibition observed with the membrane-bound cytochrome bd-I was 20 ± 10% at ~200 µM CO.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Monóxido de Carbono/farmacologia , Monóxido de Carbono/metabolismo , Cobre/metabolismo , Proteínas de Escherichia coli/metabolismo , Grupo dos Citocromos b , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Citocromos/metabolismo , Oxirredutases/metabolismo , Oxirredução
10.
Artigo em Inglês | MEDLINE | ID: mdl-37128285

RESUMO

Interactions between Schistosoma mansoni and its snail host are understood primarily through experimental work with one South American vector species, Biomphalaria glabrata. However, 90% of schistosomiasis transmission occurs in Africa, where a diversity of Biomphalaria species may serve as vectors. With the long-term goal of determining the genetic and ecological determinants of infection in African snail hosts, we developed genetic models of Biomphalaria sudanica, a principal vector in the African Great Lakes. We determined laboratory infection dynamics of two S. mansoni lines in four B. sudanica lines. We measured the effects of the following variables on infection success and the number of cercariae produced (infection intensity): (i) the combination of parasite and snail line; (ii) the dose of parasites; and (iii) the size of snail at time of exposure. We found one snail line to be almost completely incompatible with both parasite lines, while other snail lines showed a polymorphism in compatibility: compatible with one parasite line while incompatible with another. Interestingly, these patterns were opposite in some of the snail lines. The parasite-snail combination had no significant effect on the number of cercariae produced in a successful infection. Miracidia dose had a strong effect on infection status, in that higher doses led to a greater proportion of infected snails, but had no effect on infection intensity. In one of the snail-schistosome combinations, snail size at the time of exposure affected both infection status and cercarial production in that the smallest size class of snails (1.5-2.9 mm) had the highest infection rates, and produced the greatest number of cercariae, suggesting that immunity increases with age and development. The strongest predictor of the infection intensity was the size of snail at the time of shedding: 1 â€‹mm of snail growth equated to a 19% increase in cercarial production. These results strongly suggest that infection status is determined in part by the interaction between snail and schistosome genetic lines, consistent with a gene-for-gene or matching allele model. This foundational work provides rationale for determining the genetic interactions between African snails and schistosomes, which may be applied to control strategies.

11.
PLoS Negl Trop Dis ; 17(3): e0011208, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961841

RESUMO

BACKGROUND: Biomphalaria pfeifferi is the world's most widely distributed and commonly implicated vector snail species for the causative agent of human intestinal schistosomiasis, Schistosoma mansoni. In efforts to control S. mansoni transmission, chemotherapy alone has proven insufficient. New approaches to snail control offer a way forward, and possible genetic manipulations of snail vectors will require new tools. Towards this end, we here offer a diverse set of genomic resources for the important African schistosome vector, B. pfeifferi. METHODOLOGY/PRINCIPAL FINDINGS: Based largely on PacBio High-Fidelity long reads, we report a genome assembly size of 772 Mb for B. pfeifferi (Kenya), smaller in size than known genomes of other planorbid schistosome vectors. In a total of 505 scaffolds (N50 = 3.2Mb), 430 were assigned to 18 large linkage groups inferred to represent the 18 known chromosomes, based on whole genome comparisons with Biomphalaria glabrata. The annotated B. pfeifferi genome reveals a divergence time of 3.01 million years with B. glabrata, a South American species believed to be similar to the progenitors of B. pfeifferi which undertook a trans-Atlantic colonization < five million years ago. CONCLUSIONS/SIGNIFICANCE: The genome for this preferentially self-crossing species is less heterozygous than related species known to be preferential out-crossers; its smaller genome relative to congeners may similarly reflect its preference for selfing. Expansions of gene families with immune relevance are noted, including the FReD gene family which is far more similar in its composition to B. glabrata than to Bulinus truncatus, a vector for Schistosoma haematobium. Provision of this annotated genome will help better understand the dependencies of trematodes on snails, enable broader comparative insights regarding factors contributing to susceptibility/ resistance of snails to schistosome infections, and provide an invaluable resource with respect to identifying and manipulating snail genes as potential targets for more specific snail control programs.


Assuntos
Biomphalaria , Parasitos , Esquistossomose mansoni , Animais , Humanos , Schistosoma mansoni/genética , Biomphalaria/parasitologia , Esquistossomose mansoni/parasitologia , Schistosoma haematobium
12.
PLoS Negl Trop Dis ; 17(2): e0010752, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763676

RESUMO

The planorbid gastropod genus Bulinus consists of 38 species that vary in their ability to vector Schistosoma haematobium (the causative agent of human urogenital schistosomiasis), other Schistosoma species, and non-schistosome trematodes. Relying on sequence-based identifications of bulinids (partial cox1 and 16S) and Schistosoma (cox1 and ITS), we examined Bulinus species in the Lake Victoria Basin in Kenya for naturally acquired infections with Schistosoma species. We collected 6,133 bulinids from 11 sites between 2014-2021, 226 (3.7%) of which harbored Schistosoma infections. We found 4 Bulinus taxa from Lake Victoria (B. truncatus, B. tropicus, B. ugandae, and B. cf. transversalis), and an additional 4 from other habitats (B. globosus, B. productus, B. forskalii, and B. scalaris). S. haematobium infections were found in B. globosus and B. productus (with infections in the former predominating) whereas S. bovis infections were identified in B. globosus, B. productus, B. forskalii, and B. ugandae. No nuclear/mitochondrial discordance potentially indicative of S. haematobium/S. bovis hybridization was detected. We highlight the presence of Bulinus ugandae as a distinct lake-dwelling taxon closely related to B. globosus yet, unlike all other members of the B. africanus species group, is likely not a vector for S. haematobium, though it does exhibit susceptibility to S. bovis. Other lake-dwelling bulinids also lacked S. haematobium infections, supporting the possibility that they all lack compatibility with local S. haematobium, thereby preventing widespread transmission of urogenital schistosomiasis in the lake's waters. We support B. productus as a distinct species from B. nasutus, B. scalaris as distinct from B. forskalii, and add further evidence for a B. globosus species complex with three lineages represented in Kenya alone. This study serves as an essential prelude for investigating why these patterns in compatibility exist and whether the underlying biological mechanisms may be exploited for the purpose of limiting schistosome transmission.


Assuntos
Bulinus , Esquistossomose Urinária , Animais , Humanos , Bulinus/genética , Esquistossomose Urinária/epidemiologia , Lagos , Quênia/epidemiologia , Schistosoma haematobium/genética , Caramujos
13.
J Neurosci Res ; 101(6): 826-842, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690607

RESUMO

The immature central nervous system is recognized as having substantial neuroplastic capacity. In this study, we explored the hypothesis that rehabilitation can exploit that potential and elicit reciprocal walking in nonambulatory children with chronic, severe (i.e., lower extremity motor score < 10/50) spinal cord injuries (SCIs). Seven male subjects (3-12 years of age) who were at least 1-year post-SCI and incapable of discrete leg movements believed to be required for walking, enrolled in activity-based locomotor training (ABLT; clinicaltrials.gov NCT00488280). Six children completed the study. Following a minimum of 49 sessions of ABLT, three of the six children achieved walking with reverse rolling walkers. Stepping development, however, was not accompanied by improvement in discrete leg movements as underscored by the persistence of synergistic movements and little change in lower extremity motor scores. Interestingly, acoustic startle responses exhibited by the three responding children suggested preserved reticulospinal inputs to circuitry below the level of injury capable of mediating leg movements. On the other hand, no indication of corticospinal integrity was obtained with transcranial magnetic stimulation evoked responses in the same individuals. These findings suggest some children who are not predicted to improve motor and locomotor function may have a reserve of adaptive plasticity that can emerge in response to rehabilitative strategies such as ABLT. Further studies are warranted to determine whether a critical need exists to re-examine rehabilitation approaches for pediatric SCI with poor prognosis for any ambulatory recovery.


Assuntos
Transtornos dos Movimentos , Traumatismos da Medula Espinal , Humanos , Masculino , Criança , Reflexo de Sobressalto , Caminhada/fisiologia , Marcha , Extremidade Inferior , Recuperação de Função Fisiológica , Medula Espinal
14.
Ecosphere ; 13(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36285193

RESUMO

Schistosome parasites cause a chronic inflammatory disease in humans, and recent studies have emphasized the importance of control programs for understanding the aquatic phases of schistosomiasis transmission. The host-seeking behavior of larval schistosomes (miracidia) for their snail intermediate hosts plays a critical role in parasite transmission. Using field-derived strains of Kenyan snails and parasites, we tested two main hypotheses: (1) Parasites prefer the most compatible host, and (2) parasites avoid hosts that are already infected. We tested preference to three Biomphalaria host snail taxa (B. pfeifferi, B. sudanica, and B. choanomphala), using allopatric and sympatric Schistosoma mansoni isolates and two different nonhost snail species that co-occur with Biomphalaria, Bulinus globosus, and Physa acuta. We also tested whether schistosomes avoid snail hosts that are already infected by another trematode species and whether competitive dominance played a role in their behavior. Preference was assessed using two-way choice chambers and by visually counting parasites that moved toward competing stimuli. In pairwise comparisons, we found that S. mansoni did not always prefer the more compatible snail taxon, but never favored an incompatible host over a compatible host. While parasites preferred B. pfeifferi to the nonhost species B. globosus, they did not significantly prefer B. pfeifferi versus P. acuta, an introduced species in Kenya. Finally, we demonstrated that parasites avoid infected snails if the resident parasite was competitively dominant (Patagifer sp.), and preferred snails infected with subordinates (xiphidiocercariae) to uninfected snails. These results provide evidence of "fine tuning" in the ability of schistosome miracidia to detect hosts; however, they did not always select hosts that would maximize fitness. Appreciating such discriminatory abilities could lead to a better understanding of how ecosystem host and parasite diversity influences disease transmission and could provide novel control mechanisms to improve human health.

15.
Biochemistry (Mosc) ; 87(8): 720-730, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36171653

RESUMO

Cytochrome bd-II is one of the three terminal quinol oxidases of the aerobic respiratory chain of Escherichia coli. Preparations of the detergent-solubilized untagged bd-II oxidase isolated from the bacterium were shown to scavenge hydrogen peroxide (H2O2) with high rate producing molecular oxygen (O2). Addition of H2O2 to the same buffer that does not contain enzyme or contains thermally denatured cytochrome bd-II does not lead to any O2 production. The latter observation rules out involvement of adventitious transition metals bound to the protein. The H2O2-induced O2 production is not susceptible to inhibition by N-ethylmaleimide (the sulfhydryl binding compound), antimycin A (the compound that binds specifically to a quinol binding site), and CO (diatomic gas that binds specifically to the reduced heme d). However, O2 formation is inhibited by cyanide (IC50 = 4.5 ± 0.5 µM) and azide. Addition of H2O2 in the presence of dithiothreitol and ubiquinone-1 does not inactivate cytochrome bd-II and apparently does not affect the O2 reductase activity of the enzyme. The ability of cytochrome bd-II to detoxify H2O2 could play a role in bacterial physiology by conferring resistance to the peroxide-mediated stress.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Antimicina A/metabolismo , Azidas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Cianetos/metabolismo , Grupo dos Citocromos b/metabolismo , Citocromos/metabolismo , Detergentes , Ditiotreitol/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Etilmaleimida/metabolismo , Peróxido de Hidrogênio/metabolismo , Hidroquinonas/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigênio/metabolismo , Ubiquinona/metabolismo
16.
One Health ; 13: 100280, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34258371

RESUMO

Parasites with complex life cycles engaging multiple host species living among different environments well-exemplify the value of a cross-cutting One Health approach to understanding fundamental concerns like disease emergence or spread. Here we provide new information regarding a pathogenic schistosome trematode parasite of both wild and domestic mammals that has recently expanded its known range from mesic/wet environments of the southeastern United States to the arid southwest. In 2018, 12 dogs living near a man-made pond in Moab, Utah, were found positive for Heterobilharzia americana, the most westerly report of this endemic North American schistosome, and the first from Utah. Raccoon scats collected near the pond were positive for H. americana eggs, and snails living near the pond's water line identified as Galba humilis shed H. americana cercariae, the first indication of natural infections in this widespread North American snail species. The susceptibility of G. humilis to H. americana was confirmed experimentally. Our studies support the existence of two variants of H. americana and emphasize the need for further investigations of lymnaeids and their compatibility with H. americana, to better define the future potential for its spread. Capture of a new species of intermediate host vector snail and construction of man-made habitats suitable for this snail have created the potential for a much more widespread animal health problem, especially for dogs and horses. H. americana will prove difficult to control because of the role of raccoons in maintaining transmission and the amphibious habits of the snail hosts of this pathogenic schistosome.

17.
Antioxidants (Basel) ; 10(6)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073980

RESUMO

Reactive oxygen species (ROS) comprise the superoxide anion (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2). ROS can damage a variety of macromolecules, including DNA, RNA, proteins, and lipids, and compromise cell viability. To prevent or reduce ROS-induced oxidative stress, bacteria utilize different ROS defense mechanisms, of which ROS scavenging enzymes, such as superoxide dismutases, catalases, and peroxidases, are the best characterized. Recently, evidence has been accumulating that some of the terminal oxidases in bacterial respiratory chains may also play a protective role against ROS. The present review covers this role of terminal oxidases in light of recent findings.

18.
J Parasitol ; 107(2): 349-357, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33906231

RESUMO

Schistosoma mansoni, which causes human intestinal schistosomiasis, continues to be a major public health concern in the Lake Victoria basin in western Kenya, with Biomphalaria sudanica (a shoreline inhabiting snail) and Biomphalaria choanomphala (a deep-water snail) playing roles in transmission. A recent study showed that B. sudanica was abundantly present near all study villages on the lakeshore, but B. choanomphala was significantly more abundant near villages known to be persistent transmission hotspots. The present study investigated the relative compatibility of B. sudanica and B. choanomphala with S. mansoni. A reciprocal cross-infection experiment used young adult F1 generation B. sudanica and B. choanomphala that were exposed to either 1, 5, or 10 sympatric or allopatric human-derived S. mansoni miracidia. Three weeks post-exposure (PE) and weekly thereafter, the snails were counted and screened for schistosome cercariae, and at 7 wk PE, total cercariae shed during a 2 hr period by each infected snail was determined. Pre-patent periods for S. mansoni in both B. sudanica and B. choanomphala were similar, and most snails in all exposure combinations started shedding cercariae 5 wk PE. Prevalences were significantly higher in B. choanomphala (12.2-80.9%) than in B. sudanica (5.2-18.6%) at each dose, regardless of whether miracidia were of an allopatric or a sympatric source (P < 0.0001). Overall, the odds of a snail becoming infected with 5 or 10 miracidia were significantly higher than the odds of being infected with 1 miracidium, (P < 0.0001), and fewer cercariae were produced by snails exposed to single as compared to 5 or 10 miracidia. On average, B. choanomphala produced more cercariae ( = 458, SD = 414) than B. sudanica ( = 238, SD = 208) (P < 0.0001). These results suggest that B. choanomphala is more compatible with S. mansoni than B. sudanica. Though B. choanomphala can be found in shallow shoreline waters, it is, for the most part, a deeper-water taxon. Because dredging is a relatively inefficient means of sampling, B. choanomphala is likely underestimated with respect to its population size, the number of S. mansoni-positive snails, and its role in maintaining transmission.


Assuntos
Biomphalaria/fisiologia , Biomphalaria/parasitologia , Vetores de Doenças , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/transmissão , Animais , Biomphalaria/classificação , Biomphalaria/imunologia , Fezes/parasitologia , Humanos , Quênia/epidemiologia , Esquistossomose mansoni/epidemiologia
19.
PLoS Negl Trop Dis ; 15(3): e0009175, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760814

RESUMO

BACKGROUND: We were tasked by the World Health Organization (WHO) to address the following question: What techniques should be used to diagnose Schistosoma infections in snails and in the water in potential transmission sites? Our goal was to review and evaluate the available literature and provide recommendations and insights for the development of WHO's Guidelines Development Group for schistosomiasis control and elimination. METHODOLOGY: We searched several databases using strings of search terms, searched bibliographies of pertinent papers, and contacted investigators who have made contributions to this field. Our search covered from 1970 to Sept 2020. All papers were considered in a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, and retained papers were grouped by technique and subjected to our GRADE (Grading of Recommendations, Assessment, Development and Evaluations) evidence assessment profile determined in consultation with WHO. We also considered issues of sensitivity, specificity, coverage, cost, robustness, support needs, schistosome species discrimination, and relevant detection limits. PRINCIPAL FINDINGS: Our PRISMA process began with the perusal of 949 articles, of which 158 were retained for data extraction and evaluation. We identified 25 different techniques and for each applied a GRADE assessment considering limitations, inconsistency, imprecision, indirectness, and publication bias. We also provide advantages and disadvantages for each category of techniques. CONCLUSIONS: Our GRADE analysis returned an assessment of moderate quality of evidence for environmental DNA (eDNA), qPCR and LAMP (Loop-mediated isothermal amplification). No single ideal diagnostic approach has yet been developed, but considerable recent progress has been made. We note a growing trend to use eDNA techniques to permit more efficient and replicable sampling. qPCR-based protocols for follow-up detection offer a versatile, mature, sensitive, and specific platform for diagnosis though centralized facilities will be required to favor standardization. Droplet digital PCR (ddPCR) can play a complementary role if inhibitors are a concern, or more sensitivity or quantification is needed. Snail collection, followed by shedding, is encouraged to provide specimens for sequence verifications of snails or schistosomes. LAMP or other isothermal detection techniques offer the prospect of less expensive and more distributed network of analysis but may face standardization and verification challenges related to actual sequences amplified. Ability to detect schistosome infections in snails or in the water is needed if control and elimination programs hope to succeed. Any diagnostic techniques used need to be regularly verified by the acquisition of DNA sequences to confirm that the detected targets are of the expected species. Further improvements may be necessary to identify the ideal schistosome or snail sequences to target for amplification. More field testing and standardization will be essential for long-term success.


Assuntos
Schistosoma/isolamento & purificação , Caramujos/parasitologia , Água/parasitologia , Animais , DNA Ambiental/análise , DNA de Helmintos/análise , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Schistosoma/genética , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Caramujos/genética
20.
Am J Trop Med Hyg ; 103(6): 2268-2277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32901608

RESUMO

Investigations leading to a WHO-validated declaration of elimination of schistosomiasis transmission are contemplated for several countries, including Caribbean island nations. With assistance from the Pan American Health Organization, we undertook freshwater snail surveys in two such nations, Antigua and Barbuda, and Montserrat in September and October 2017. Historically, the transmission of Schistosoma mansoni supported by the Neotropical vector snail Biomphalaria glabrata occurred in both countries. Transmission on the islands is thought to have been interrupted by the treatment of infected people, improved sanitation, introduction of competitor snails, and on Montserrat with the eruption of the Soufrière volcano which decimated known B. glabrata habitats. Guided by the available literature and local expertise, we found Biomphalaria snails in seven of 15 and one of 14 localities on Antigua and Montserrat, respectively, most of which were identified anatomically and molecularly as Biomphalaria kuhniana. Two localities on Antigua harbored B. glabrata, but no schistosome infections in snails were found. For snail-related aspects of validation of elimination, there are needs to undertake basic local training in medical malacology, be guided by historical literature and recent human schistosomiasis surveys, improve and validate sampling protocols for aquatic habitats, enlist local expertise to efficiently find potential transmission sites, use both anatomical and molecular identifications of schistosomes or putative vector snail species found, if possible determine the susceptibility of recovered Biomphalaria spp. to S. mansoni, publish survey results, and provide museum vouchers of collected snails and parasites as part of the historical record.


Assuntos
Biomphalaria/parasitologia , Reservatórios de Doenças/parasitologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/prevenção & controle , Animais , Antígua e Barbuda/epidemiologia , Biomphalaria/classificação , Biomphalaria/genética , Erradicação de Doenças , Geografia , Humanos , Filogenia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/transmissão , Índias Ocidentais/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA