Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 14(1): 7384, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968267

RESUMO

Spinal muscular atrophy is an autosomal recessive neuromuscular disease caused by mutations in the multifunctional protein Survival of Motor Neuron, or SMN. Within the nucleus, SMN localizes to Cajal bodies, which are associated with nucleoli, nuclear organelles dedicated to the first steps of ribosome biogenesis. The highly organized structure of the nucleolus can be dynamically altered by genotoxic agents. RNAP1, Fibrillarin, and nucleolar DNA are exported to the periphery of the nucleolus after genotoxic stress and, once DNA repair is fully completed, the organization of the nucleolus is restored. We find that SMN is required for the restoration of the nucleolar structure after genotoxic stress. During DNA repair, SMN shuttles from the Cajal bodies to the nucleolus. This shuttling is important for nucleolar homeostasis and relies on the presence of Coilin and the activity of PRMT1.


Assuntos
Atrofia Muscular Espinal , Proteínas de Ligação a RNA , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucléolo Celular/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neurônios Motores/metabolismo , Proteínas do Complexo SMN/metabolismo , Corpos Enovelados/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003406

RESUMO

Congenital Myasthenic Syndromes (CMSs) are rare inherited diseases of the neuromuscular junction characterized by muscle weakness. CMSs with acetylcholinesterase deficiency are due to pathogenic variants in COLQ, a collagen that anchors the enzyme at the synapse. The two COLQ N-terminal domains have been characterized as being biochemical and functional. They are responsible for the structure of the protein in the triple helix and the association of COLQ with acetylcholinesterase. To deepen the analysis of the distal C-terminal peptide properties and understand the CMSs associated to pathogenic variants in this domain, we have analyzed the case of a 32 year old male patient bearing a homozygote splice site variant c.1281 C > T that changes the sequence of the last 28 aa in COLQ. Using COS cell and mouse muscle cell expression, we show that the COLQ variant does not impair the formation of the collagen triple helix in these cells, nor its association with acetylcholinesterase, and that the hetero-oligomers are secreted. However, the interaction of COLQ variant with LRP4, a signaling hub at the neuromuscular junction, is decreased by 44% as demonstrated by in vitro biochemical methods. In addition, an increase in all acetylcholine receptor subunit mRNA levels is observed in muscle cells derived from the patient iPSC. All these approaches point to pathophysiological mechanisms essentially characterized by a decrease in signaling and the presence of immature acetylcholine receptors.


Assuntos
Síndromes Miastênicas Congênitas , Masculino , Humanos , Animais , Camundongos , Adulto , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Colágeno/metabolismo , Mutação
3.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894969

RESUMO

Over the past 20 years, the use of pluripotent stem cells to mimic the complexities of the human neuromuscular junction has received much attention. Deciphering the key mechanisms underlying the establishment and maturation of this complex synapse has been driven by the dual goals of addressing developmental questions and gaining insight into neuromuscular disorders. This review aims to summarise the evolution and sophistication of in vitro neuromuscular junction models developed from the first differentiation of human embryonic stem cells into motor neurons to recent neuromuscular organoids. We also discuss the potential offered by these models to decipher different neuromuscular diseases characterised by defects in the presynaptic compartment, the neuromuscular junction, and the postsynaptic compartment. Finally, we discuss the emerging field that considers the use of these techniques in drug screening assay and the challenges they will face in the future.


Assuntos
Doenças Neuromusculares , Células-Tronco Pluripotentes , Humanos , Junção Neuromuscular , Neurônios Motores/fisiologia , Sinapses
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047372

RESUMO

Melanocytes are essential for skin homeostasis and protection, and their loss or misfunction leads to a wide spectrum of diseases. Cell therapy utilizing autologous melanocytes has been used for years as an adjunct treatment for hypopigmentary disorders such as vitiligo. However, these approaches are hindered by the poor proliferative capacity of melanocytes obtained from skin biopsies. Recent advances in the field of human pluripotent stem cells have fueled the prospect of generating melanocytes. Here, we have developed a well-characterized method to produce a pure and homogenous population of functional and proliferative melanocytes. The genetic stability and potential transformation of melanocytes from pluripotent stem cells have been evaluated over time during the in vitro culture process. Thanks to transcriptomic analysis, the molecular signatures all along the differentiation protocol have been characterized, providing a solid basis for standardizing the protocol. Altogether, our results promise meaningful, broadly applicable, and longer-lasting advances for pigmentation disorders and open perspectives for innovative biotherapies for pigment disorders.


Assuntos
Transtornos da Pigmentação , Células-Tronco Pluripotentes , Vitiligo , Humanos , Transtornos da Pigmentação/terapia , Melanócitos/patologia , Pele/patologia , Vitiligo/terapia , Vitiligo/patologia , Pigmentação da Pele
5.
Cells ; 12(4)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36831237

RESUMO

Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the expansion of a CTG repeat tract within the 3' untranslated region (3' UTR) of the dystrophia myotonica protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different organs. Up until now, different in vitro models from patients' derived cells have largely contributed to the current understanding of DM1. Most of those studies have focused on muscle physiopathology. However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular models to cover the whole complexity of the disease and open up options for new therapeutic approaches. This review discusses how human pluripotent stem cell-based models significantly contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that led to actual phase III clinical trials.


Assuntos
Distrofia Miotônica , Células-Tronco Pluripotentes , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/patologia , Células-Tronco Pluripotentes/metabolismo , Descoberta de Drogas
6.
Am J Hum Genet ; 110(3): 442-459, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812914

RESUMO

Dysregulated Plastin 3 (PLS3) levels associate with a wide range of skeletal and neuromuscular disorders and the most common types of solid and hematopoietic cancer. Most importantly, PLS3 overexpression protects against spinal muscular atrophy. Despite its crucial role in F-actin dynamics in healthy cells and its involvement in many diseases, the mechanisms that regulate PLS3 expression are unknown. Interestingly, PLS3 is an X-linked gene and all asymptomatic SMN1-deleted individuals in SMA-discordant families who exhibit PLS3 upregulation are female, suggesting that PLS3 may escape X chromosome inactivation. To elucidate mechanisms contributing to PLS3 regulation, we performed a multi-omics analysis in two SMA-discordant families using lymphoblastoid cell lines and iPSC-derived spinal motor neurons originated from fibroblasts. We show that PLS3 tissue-specifically escapes X-inactivation. PLS3 is located ∼500 kb proximal to the DXZ4 macrosatellite, which is essential for X chromosome inactivation. By applying molecular combing in a total of 25 lymphoblastoid cell lines (asymptomatic individuals, individuals with SMA, control subjects) with variable PLS3 expression, we found a significant correlation between the copy number of DXZ4 monomers and PLS3 levels. Additionally, we identified chromodomain helicase DNA binding protein 4 (CHD4) as an epigenetic transcriptional regulator of PLS3 and validated co-regulation of the two genes by siRNA-mediated knock-down and overexpression of CHD4. We show that CHD4 binds the PLS3 promoter by performing chromatin immunoprecipitation and that CHD4/NuRD activates the transcription of PLS3 by dual-luciferase promoter assays. Thus, we provide evidence for a multilevel epigenetic regulation of PLS3 that may help to understand the protective or disease-associated PLS3 dysregulation.


Assuntos
Epigênese Genética , Atrofia Muscular Espinal , Feminino , Humanos , Masculino , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas dos Microfilamentos/genética , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética
7.
Neuropathol Appl Neurobiol ; 49(1): e12876, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36575942

RESUMO

AIMS: Myotonic dystrophy type I (DM1) is one of the most frequent muscular dystrophies in adults. Although DM1 has long been considered mainly a muscle disorder, growing evidence suggests the involvement of peripheral nerves in the pathogenicity of DM1 raising the question of whether motoneurons (MNs) actively contribute to neuromuscular defects in DM1. METHODS: By using micropatterned 96-well plates as a coculture platform, we generated a functional neuromuscular model combining DM1 and muscleblind protein (MBNL) knock-out human-induced pluripotent stem cells-derived MNs and human healthy skeletal muscle cells. RESULTS: This approach led to the identification of presynaptic defects which affect the formation or stability of the neuromuscular junction at an early developmental stage. These neuropathological defects could be reproduced by the loss of RNA-binding MBNL proteins, whose loss of function in vivo is associated with muscular defects associated with DM1. These experiments indicate that the functional defects associated with MNs can be directly attributed to MBNL family proteins. Comparative transcriptomic analyses also revealed specific neuronal-related processes regulated by these proteins that are commonly misregulated in DM1. CONCLUSIONS: Beyond the application to DM1, our approach to generating a robust and reliable human neuromuscular system should facilitate disease modelling studies and drug screening assays.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Miotônica , Adulto , Humanos , Distrofia Miotônica/patologia , Proteínas de Ligação a RNA/metabolismo , Junção Neuromuscular/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/patologia
8.
Acta Neuropathol ; 144(4): 707-731, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948834

RESUMO

Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.


Assuntos
Agrina , Síndromes Miastênicas Congênitas , Agrina/genética , Humanos , Neurônios Motores/metabolismo , Mutação , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Junção Neuromuscular/metabolismo
9.
Nat Commun ; 13(1): 3841, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35789154

RESUMO

Brain dysfunction in myotonic dystrophy type 1 (DM1), the prototype of toxic RNA disorders, has been mainly attributed to neuronal RNA misprocessing, while little attention has been given to non-neuronal brain cells. Here, using a transgenic mouse model of DM1 that expresses mutant RNA in various brain cell types (neurons, astroglia, and oligodendroglia), we demonstrate that astrocytes exhibit impaired ramification and polarization in vivo and defects in adhesion, spreading, and migration. RNA-dependent toxicity and phenotypes are also found in human transfected glial cells. In line with the cell phenotypes, molecular analyses reveal extensive expression and accumulation of toxic RNA in astrocytes, which result in RNA spliceopathy that is more severe than in neurons. Astrocyte missplicing affects primarily transcripts that regulate cell adhesion, cytoskeleton, and morphogenesis, and it is confirmed in human brain tissue. Our findings demonstrate that DM1 impacts astrocyte cell biology, possibly compromising their support and regulation of synaptic function.


Assuntos
Distrofia Miotônica , Animais , Astrócitos/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Distrofia Miotônica/metabolismo , RNA/genética , Proteínas de Ligação a RNA/metabolismo , Aderências Teciduais
11.
Cell Mol Life Sci ; 79(8): 441, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35864358

RESUMO

Spinal muscular atrophy (SMA) is a genetic disease resulting in the loss of α-motoneurons followed by muscle atrophy. It is caused by knock-out mutations in the survival of motor neuron 1 (SMN1) gene, which has an unaffected, but due to preferential exon 7 skipping, only partially functional human-specific SMN2 copy. We previously described a Drosophila-based screening of FDA-approved drugs that led us to discover moxifloxacin. We showed its positive effect on the SMN2 exon 7 splicing in SMA patient-derived skin cells and its ability to increase the SMN protein level. Here, we focus on moxifloxacin's therapeutic potential in additional SMA cellular and animal models. We demonstrate that moxifloxacin rescues the SMA-related molecular and phenotypical defects in muscle cells and motoneurons by improving the SMN2 splicing. The consequent increase of SMN levels was higher than in case of risdiplam, a potent exon 7 splicing modifier, and exceeded the threshold necessary for a survival improvement. We also demonstrate that daily subcutaneous injections of moxifloxacin in a severe SMA murine model reduces its characteristic neuroinflammation and increases the SMN levels in various tissues, leading to improved motor skills and extended lifespan. We show that moxifloxacin, originally used as an antibiotic, can be potentially repositioned for the SMA treatment.


Assuntos
Atrofia Muscular Espinal , Animais , Modelos Animais de Doenças , Éxons/genética , Humanos , Camundongos , Moxifloxacina/farmacologia , Moxifloxacina/uso terapêutico , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenótipo , Proteína 1 de Sobrevivência do Neurônio Motor/genética
12.
J Invest Dermatol ; 142(10): 2695-2705.e11, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35490743

RESUMO

Epidermolysis bullosa simplex (EBS), an autosomal dominant skin disorder, is characterized by skin fragility. Genetically, the majority of cases are related to missense sequence variations in two keratin genes K5 or K14, leading to cytolysis of basal keratinocytes (KCs) and intraepidermal blistering. Progress toward the identification of treatments has been hampered by an incomplete understanding of the mechanisms underlying this disease and availability of relevant and reliable in vitro models recapitulating the physiopathological mechanisms. Recent advances in stem cell field have fueled the prospect that these limitations could be overcome, thanks to the availability of disease-specific human induced pluripotent stem cells (hiPSCs). In this study, we generated hiPSC-derived KCs from patients carrying keratin gene K5-dominant sequence variations and compared them with nonaffected hiPSC-derived KCs as well as their primary counterparts. Our results showed that EBS hiPSC-derived KCs displayed proliferative defects, increased capacity to migrate, alteration of extracellular signal‒regulated kinase signaling pathway, and cytoplasmic keratin filament aggregates as observed in primary EBS KCs. Of interest, EBS hiPSC-derived KCs exhibited downregulation of hemidesmosomal proteins, revealing the different effects of keratin gene K5 sequence variations on keratin cytoskeletal organization. With a combination of culture miniaturization and treatment with the chaperone molecule 4-phenylbutyric acid, our results showed that hiPSC-derived KCs represent a suitable model for identifying novel therapies for EBS.


Assuntos
Epidermólise Bolhosa Simples , Células-Tronco Pluripotentes Induzidas , Epidermólise Bolhosa Simples/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Humanos , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Queratinócitos/metabolismo , Queratinas/genética , Queratinas/metabolismo , Mutação , Fenótipo
13.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269468

RESUMO

Extracellular vesicles can mediate communication between tissues, affecting the physiological conditions of recipient cells. They are increasingly investigated in Amyotrophic Lateral Sclerosis, the most common form of Motor Neurone Disease, as transporters of misfolded proteins including SOD1, FUS, TDP43, or other neurotoxic elements, such as the dipeptide repeats resulting from C9orf72 expansions. EVs are classified based on their biogenesis and size and can be separated by differential centrifugation. They include exosomes, released by the fusion of multivesicular bodies with the plasma membrane, and ectosomes, also known as microvesicles or microparticles, resulting from budding or pinching of the plasma membrane. In the current study, EVs were obtained from the myotube cell culture medium of ALS patients or healthy controls. EVs of two different sizes, separating at 20,000 or 100,000 g, were then compared in terms of their effects on recipient motor neurons, astrocytes, and myotubes. Compared to untreated cells, the smaller, exosome-like vesicles of ALS patients reduced the survival of motor neurons by 31% and of myotubes by 18%, decreased neurite length and branching, and increased the proportion of stellate astrocytes, whereas neither those of healthy subjects, nor larger EVs of ALS or healthy subjects, had such effects.


Assuntos
Esclerose Lateral Amiotrófica , Exossomos , Vesículas Extracelulares , Síndromes Neurotóxicas , Esclerose Lateral Amiotrófica/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neurônios Motores/metabolismo , Fibras Musculares Esqueléticas/metabolismo
14.
Neuropathol Appl Neurobiol ; 48(5): e12816, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35338505

RESUMO

AIM: Spinal muscular atrophy (SMA) is a neuromuscular disease caused by survival of motor neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the unfolded protein response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS: We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS: We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS: We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.


Assuntos
Fator 6 Ativador da Transcrição , Endorribonucleases , Atrofia Muscular Espinal , Proteínas Serina-Treonina Quinases , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 1 de Ligação a X-Box , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Camundongos , Neurônios Motores/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
15.
J Cachexia Sarcopenia Muscle ; 13(2): 1385-1402, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35194965

RESUMO

BACKGROUND: The cause of the motor neuron (MN) death that drives terminal pathology in amyotrophic lateral sclerosis (ALS) remains unknown, and it is thought that the cellular environment of the MN may play a key role in MN survival. Several lines of evidence implicate vesicles in ALS, including that extracellular vesicles may carry toxic elements from astrocytes towards MNs, and that pathological proteins have been identified in circulating extracellular vesicles of sporadic ALS patients. Because MN degeneration at the neuromuscular junction is a feature of ALS, and muscle is a vesicle-secretory tissue, we hypothesized that muscle vesicles may be involved in ALS pathology. METHODS: Sporadic ALS patients were confirmed to be ALS according to El Escorial criteria and were genotyped to test for classic gene mutations associated with ALS, and physical function was assessed using the ALSFRS-R score. Muscle biopsies of either mildly affected deltoids of ALS patients (n = 27) or deltoids of aged-matched healthy subjects (n = 30) were used for extraction of muscle stem cells, to perform immunohistology, or for electron microscopy. Muscle stem cells were characterized by immunostaining, RT-qPCR, and transcriptomic analysis. Secreted muscle vesicles were characterized by proteomic analysis, Western blot, NanoSight, and electron microscopy. The effects of muscle vesicles isolated from the culture medium of ALS and healthy myotubes were tested on healthy human-derived iPSC MNs and on healthy human myotubes, with untreated cells used as controls. RESULTS: An accumulation of multivesicular bodies was observed in muscle biopsies of sporadic ALS patients by immunostaining and electron microscopy. Study of muscle biopsies and biopsy-derived denervation-naïve differentiated muscle stem cells (myotubes) revealed a consistent disease signature in ALS myotubes, including intracellular accumulation of exosome-like vesicles and disruption of RNA-processing. Compared with vesicles from healthy control myotubes, when administered to healthy MNs the vesicles of ALS myotubes induced shortened, less branched neurites, cell death, and disrupted localization of RNA and RNA-processing proteins. The RNA-processing protein FUS and a majority of its binding partners were present in ALS muscle vesicles, and toxicity was dependent on the expression level of FUS in recipient cells. Toxicity to recipient MNs was abolished by anti-CD63 immuno-blocking of vesicle uptake. CONCLUSIONS: ALS muscle vesicles are shown to be toxic to MNs, which establishes the skeletal muscle as a potential source of vesicle-mediated toxicity in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Idoso , Esclerose Lateral Amiotrófica/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/metabolismo , Células Musculares/metabolismo , Proteômica
16.
Stem Cell Res Ther ; 12(1): 599, 2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34865655

RESUMO

BACKGROUND: The lack of physiologically relevant and predictive cell-based assays is one of the major obstacles for testing and developing botulinum neurotoxins (BoNTs) therapeutics. Human-induced pluripotent stem cells (hiPSCs)-derivatives now offer the opportunity to improve the relevance of cellular models and thus the translational value of preclinical data. METHODS: We investigated the potential of hiPSC-derived motor neurons (hMNs) optical stimulation combined with calcium imaging in cocultured muscle cells activity to investigate BoNT-sensitivity of an in vitro model of human muscle-nerve system. RESULTS: Functional muscle-nerve coculture system was developed using hMNs and human immortalized skeletal muscle cells. Our results demonstrated that hMNs can innervate myotubes and induce contractions and calcium transient in muscle cells, generating an in vitro human motor endplate showing dose-dependent sensitivity to BoNTs intoxication. The implementation of optogenetics combined with live calcium imaging allows to monitor the impact of BoNTs intoxication on synaptic transmission in human motor endplate model. CONCLUSIONS: Altogether, our findings demonstrate the promise of optogenetically hiPSC-derived controlled muscle-nerve system for pharmaceutical BoNTs testing and development.


Assuntos
Toxinas Botulínicas , Células-Tronco Pluripotentes Induzidas , Toxinas Botulínicas/farmacologia , Humanos , Placa Motora , Neurônios Motores
17.
Am J Hum Genet ; 108(11): 2171-2185, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34699745

RESUMO

Recent studies indicate that neurodegenerative processes that appear during childhood and adolescence in individuals with Wolfram syndrome (WS) occur in addition to early brain development alteration, which is clinically silent. Underlying pathological mechanisms are still unknown. We have used induced pluripotent stem cell-derived neural cells from individuals affected by WS in order to reveal their phenotypic and molecular correlates. We have observed that a subpopulation of Wolfram neurons displayed aberrant neurite outgrowth associated with altered expression of axon guidance genes. Selective inhibition of the ATF6α arm of the unfolded protein response prevented the altered phenotype, although acute endoplasmic reticulum stress response-which is activated in late Wolfram degenerative processes-was not detected. Among the drugs currently tried in individuals with WS, valproic acid was the one that prevented the pathological phenotypes. These results suggest that early defects in axon guidance may contribute to the loss of neurons in individuals with WS.


Assuntos
Idade de Início , Células-Tronco Pluripotentes Induzidas/citologia , Neuritos , Neurônios/citologia , Síndrome de Wolfram/patologia , Sistemas CRISPR-Cas , Estudos de Casos e Controles , Estresse do Retículo Endoplasmático , Regulação da Expressão Gênica , Humanos , Neuritos/efeitos dos fármacos , Ácido Valproico/farmacologia , Síndrome de Wolfram/genética
18.
Med Sci (Paris) ; 37(8-9): 799-801, 2021.
Artigo em Francês | MEDLINE | ID: mdl-34491191

RESUMO

The study of human development is essential to further our knowledge and to improve our therapeutic strategies in the fields of reproductive and regenerative medicine. Given the limited access to supernumerary embryos and the prohibition on creating new ones for research, two alternative strategies can be proposed to study human embryonic development. The first is to create pseudo-embryos or blastoids. The second is to create human/animal chimeric embryos by injecting pluripotent stem cells, ES or iPS, into animal embryos. We explain herein the importance of these new experimental paradigms for studying human development and their complementarity.


TITLE: Des embryons chimères et des pseudo-embryons comme alternatives pour la recherche sur l'embryon humain. ABSTRACT: L'étude du développement humain est indispensable afin d'approfondir nos connaissances et, à long terme, perfectionner nos stratégies thérapeutiques dans les domaines de la médecine de la reproduction et de la médecine régénératrice. Face à la limite d'accès aux embryons surnuméraires et à l'interdiction d'en créer de nouveaux seulement à des fins de recherche, deux stratégies alternatives peuvent être proposées pour étudier le développement embryonnaire humain. La première consiste à fabriquer des pseudo-embryons ou blastoïdes. La seconde consiste à créer des embryons chimères homme/animal par injection de cellules souches pluripotentes, ES ou iPS, dans des embryons d'animaux. Nous expliquons ici l'importance de ces nouveaux paradigmes expérimentaux pour étudier le développement humain, et leur complémentarité.


Assuntos
Embrião de Mamíferos , Células-Tronco Pluripotentes , Animais , Quimera , Desenvolvimento Embrionário , Humanos , Medicina Regenerativa
19.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299143

RESUMO

Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.


Assuntos
Bioensaio/métodos , Toxinas Botulínicas/farmacologia , Neurônios/citologia , Neurotoxinas/farmacologia , Células-Tronco Pluripotentes/citologia , Animais , Toxinas Botulínicas/classificação , Humanos , Neurônios/efeitos dos fármacos , Neurotoxinas/classificação , Células-Tronco Pluripotentes/efeitos dos fármacos
20.
iScience ; 24(7): 102767, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278269

RESUMO

Human pluripotent stem cells have ushered in an exciting new era for disease modeling, drug discovery, and cell therapy development. Continued progress toward realizing the potential of human pluripotent stem cells will be facilitated by robust data sets and complementary resources that are easily accessed and interrogated by the stem cell community. In this context, we present SISTEMA, a quality-controlled curated gene expression database, built on a valuable catalog of human pluripotent stem cell lines, and their derivatives for which transcriptomic analyses have been generated using a single experimental pipeline. SISTEMA functions as a one-step resource that will assist the stem cell community to easily evaluate the expression level for genes of interest, while comparing them across different hPSC lines, cell types, pathological conditions, or after pharmacological treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA