Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 198(9): 1464-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26977111

RESUMO

UNLABELLED: Mycobacteria possess a series of Rip peptidoglycan endopeptidases that have been characterized in various levels of detail. The RipA and RipB proteins have been extensively studied and are DL-endopeptidases, and RipA has been considered essential to Mycobacterium smegmatis and Mycobacterium tuberculosis We show here that the ripA and ripB genes are individually dispensable in M. smegmatis and that at least one of the genes must be expressed for viability. We characterized strains carrying in-frame deletion mutations of ripA and ripB and found that both mutant strains exhibited increased susceptibility to a limited number of antibiotics and to detergent but that only the ΔripA mutant displayed hypersusceptibility to lysozyme. We also constructed and characterized ΔripD and ΔripAΔripD mutants and found that the single mutant had only an intermediate lysozyme hypersusceptibility phenotype compared to that of wild-type cells while loss of ripD in the ΔripA background partially rescued the antibiotic and lysozyme phenotypes of the ΔripA mutant. IMPORTANCE: We show that the RipA endopeptidase, which has been considered essential for cell division in certain mycobacteria, is not essential but that at least it or a similar protein, RipB, must be expressed by the bacteria for viability. This work is the first description of strains carrying single deletion mutations of RipA, RipB, and a novel endopeptidase-like protein, RipD.


Assuntos
Divisão Celular , Endopeptidases/genética , Endopeptidases/metabolismo , Viabilidade Microbiana , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Detergentes/farmacologia , Muramidase/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Fenótipo , Deleção de Sequência
2.
Infect Immun ; 80(7): 2454-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22473607

RESUMO

Invasion of intestinal epithelial cells by Salmonella enterica serovar Typhimurium is an energetically demanding process, involving the transfer of effector proteins from invading bacteria into host cells via a specialized organelle known as the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion system (T3SS). By a mechanism that remains poorly understood, entry of S. Typhimurium into epithelial cells is inhibited by Sal4, a monoclonal, polymeric IgA antibody that binds an immunodominant epitope within the O-antigen (O-Ag) component of lipopolysaccharide. In this study, we investigated how the binding of Sal4 to the surface of S. Typhimurium influences T3SS activity, bacterial energetics, and outer membrane integrity. We found that Sal4 treatment impaired T3SS-mediated translocon formation and attenuated the delivery of tagged effector proteins into epithelial cells. Sal4 treatment coincided with a partial reduction in membrane energetics and intracellular ATP levels, possibly explaining the impairment in T3SS activity. Sal4's effects on bacterial secretion and energetics occurred concurrently with an increase in O-Ag levels in culture supernatants, alterations in outer membrane permeability, and changes in surface ultrastructure, as revealed by transmission electron microscopy and cryo-electron microscopy. We propose that Sal4, by virtue of its ability to bind and cross-link the O-Ag, induces a form of outer membrane stress that compromises the integrity of the S. Typhimurium cell envelope and temporarily renders the bacterium avirulent.


Assuntos
Anticorpos Antibacterianos/metabolismo , Endocitose , Células Epiteliais/microbiologia , Imunoglobulina A/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Antígenos O/imunologia , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Humanos , Microscopia Eletrônica , Ligação Proteica , Salmonella typhimurium/ultraestrutura
3.
BMC Microbiol ; 4: 25, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15233843

RESUMO

BACKGROUND: Cell to cell signaling systems in Gram-negative bacteria rely on small diffusible molecules such as the N-acylhomoserine lactones (AHL). These compounds are involved in the production of antibiotics, exoenzymes, virulence factors and biofilm formation. They belong to the class of furanone derivatives which are frequently found in nature as pheromones, flavor compounds or secondary metabolites. To obtain more information on the relation between molecular structure and quorum sensing, we tested a variety of natural and chemically synthesized furanones for their ability to interfere with the quorum sensing mechanism using a quantitative bioassay with Chromobacterium violaceum CV026 for antagonistic and agonistic action. We were looking at the following questions: 1) Do these compounds affect growth? 2) Do these compounds activate the quorum sensing system of C. violaceum CV026? 3) Do these compounds inhibit violacein formation induced by the addition of the natural inducer N-hexanoylhomoserine lactone (HHL)? 4) Do these compounds enhance violacein formation in presence of HHL? RESULTS: The naturally produced N-acylhomoserine lactones showed a strong non-linear concentration dependent influence on violacein production in C. violaceum with a maximum at 3.7*10-8 M with HHL. Apart from the N-acylhomoserine lactones only one furanone (emoxyfurane) was found to simulate N-acylhomoserine lactone activity and induce violacein formation. The most effective substances acting negatively both on growth and quorum sensing were analogs and intermediates in synthesis of the butenolides from Streptomyces antibioticus. CONCLUSION: As the regulation of many bacterial processes is governed by quorum sensing systems, the finding of natural and synthetic furanones acting as agonists or antagonists suggests an interesting tool to control and handle detrimental AHL induced effects. Some effects are due to general toxicity; others are explained by a competitive interaction for LuxR proteins. For further experiments it is important to be aware of the fact that quorum sensing active compounds have non-linear effects. Inducers can act as inhibitors and inhibitors might be able to activate or enhance the quorum sensing system depending on chemical structure and concentration levels.


Assuntos
4-Butirolactona/análogos & derivados , Chromobacterium/fisiologia , Furanos/farmacologia , 4-Butirolactona/farmacologia , Chromobacterium/efeitos dos fármacos , Chromobacterium/crescimento & desenvolvimento , Chromobacterium/metabolismo , Indóis/metabolismo , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA