Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Neurol ; 12: 680044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122320

RESUMO

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.

2.
J Neurophysiol ; 122(2): 512-524, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166818

RESUMO

Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Ácido Glutâmico/metabolismo , Imidazóis/metabolismo , Ribosemonofosfatos/metabolismo , Núcleo Solitário/fisiologia , Núcleos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Doenças Vestibulares/metabolismo , Doenças Vestibulares/fisiopatologia , Vestíbulo do Labirinto/fisiopatologia
3.
Front Neurol ; 8: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360882

RESUMO

Vasovagal syncope is a significant medical problem without effective therapy, postulated to be related to a collapse of baroreflex function. While some studies have shown that repeated static tilts can block vasovagal syncope, this was not found in other studies. Using anesthetized, male Long-Evans rats that were highly susceptible to generation of vasovagal responses, we found that repeated activation of the vestibulosympathetic reflex (VSR) with ±2 and ±3 mA, 0.025 Hz sinusoidal galvanic vestibular stimulation (sGVS) caused incremental changes in blood pressure (BP) and heart rate (HR) that blocked further generation of vasovagal responses. Initially, BP and HR fell ≈20-50 mmHg and ≈20-50 beats/min (bpm) into a vasovagal response when stimulated with Sgv\S in susceptible rats. As the rats were continually stimulated, HR initially rose to counteract the fall in BP; then the increase in HR became more substantial and long lasting, effectively opposing the fall in BP. Finally, the vestibular stimuli simply caused an increase in BP, the normal sequence following activation of the VSR. Concurrently, habituation caused disappearance of the low-frequency (0.025 and 0.05 Hz) oscillations in BP and HR that must be present when vasovagal responses are induced. Habituation also produced significant increases in baroreflex sensitivity (p < 0.001). Thus, repeated low-frequency activation of the VSR resulted in a reduction and loss of susceptibility to development of vasovagal responses in rats that were previously highly susceptible. We posit that reactivation of the baroreflex, which is depressed by anesthesia and the disappearance of low-frequency oscillations in BP and HR are likely to be critically involved in producing resistance to the development of vasovagal responses. SGVS has been widely used to activate muscle sympathetic nerve activity in humans and is safe and well tolerated. Potentially, it could be used to produce similar habituation of vasovagal syncope in humans.

4.
Exp Brain Res ; 234(10): 2747-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411812

RESUMO

Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.


Assuntos
Imidazóis/metabolismo , Bulbo/citologia , Neurônios/metabolismo , Ribosemonofosfatos/metabolismo , Sistema Nervoso Simpático/metabolismo , Núcleos Vestibulares/citologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Lateralidade Funcional , Ácido Glutâmico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Reflexo/fisiologia , Estilbamidinas/metabolismo
5.
Front Neuroanat ; 10: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903817

RESUMO

The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.

6.
Front Neurol ; 6: 204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441823

RESUMO

Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer's disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up--regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.

7.
Front Neurol ; 5: 37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772102

RESUMO

Sinusoidal galvanic vestibular stimulation (sGVS) induces oscillations in blood pressure (BP) and heart rate (HR), i.e., vasovagal oscillations, as well as transient decreases in BP and HR, i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses, and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz). The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the vestibulo-sympathetic reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.

8.
J Comp Neurol ; 522(9): 2053-74, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24323841

RESUMO

Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Reflexo/fisiologia , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica , Imunofluorescência , Corantes Fluorescentes , Lateralidade Funcional/fisiologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Técnicas de Rastreamento Neuroanatômico , Fotomicrografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Long-Evans , Estilbamidinas , Nervo Vestibular/citologia , Nervo Vestibular/fisiologia , Núcleos Vestibulares/citologia , Núcleos Vestibulares/fisiologia
9.
FASEB J ; 27(7): 2564-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23504712

RESUMO

Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, by 70-90° nose-up tilts, and by 60° tilts of the gravitoinertial acceleration vector using translation while rotating (TWR). The average power of the BP signal in the Mayer wave range increased substantially when tilts were >70° (0.91 g), i.e., when linear accelerations in the x-z plane were ≥0.9-1.0 g. The standard deviations of the wavelet-filtered BP signals during tilt and TWR overlaid when they were normalized to 1 g. Thus, the amplitudes of the Mayer waves coded the magnitude of the linear acceleration ≥1 g acting on the head and body, and the average power in this frequency range was associated with the generation of VVRs. These data show that VVRs are a natural outcome of stimulation of the vestibulosympathetic reflex and are not a disease. The results also demonstrate the usefulness of the rat as a small animal model for studying human VVRs.


Assuntos
Pressão Sanguínea/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Frequência Cardíaca/fisiologia , Modelos Animais , Aceleração , Animais , Fenômenos Biomecânicos , Estimulação Elétrica , Humanos , Masculino , Fotopletismografia , Postura/fisiologia , Ratos , Ratos Long-Evans , Reflexo/fisiologia , Rotação , Sistema Nervoso Simpático/fisiologia , Vestíbulo do Labirinto/fisiologia
10.
Front Neurol ; 3: 4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403566

RESUMO

The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway.

11.
Exp Brain Res ; 210(1): 45-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21374078

RESUMO

Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008-0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15-20 mmHg) and HR (≈3 beat*s(-1)), followed by a slow recovery over 1-6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s(-1)/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025-0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s(-1)/g (HR) for pitches of 20-90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Síncope Vasovagal/fisiopatologia , Vestíbulo do Labirinto/fisiologia , Animais , Estimulação Elétrica , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans , Nervo Vago/fisiologia
12.
J Vestib Res ; 21(1): 49-62, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21422542

RESUMO

The vestibular system senses the movement and position of the head in space and uses this information to stabilize vision, control posture, perceive head orientation and self-motion in three-dimensional space, and modulate autonomic and limbic activity in response to locomotion and changes in posture. Most vestibular signals are not consciously perceived and are usually appreciated through effector pathways classically described as the vestibulo-ocular, vestibulo-spinal, vestibulo-collic and vestibulo-autonomic reflexes. The present study reviews some of the recent data concerning the connectivity and chemical anatomy of vestibular projections to autonomic sites that are important in the sympathetic control of blood pressure.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Pressão Sanguínea/fisiologia , Vias Neurais/fisiologia , Sistema Nervoso Simpático/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Humanos , Bulbo/fisiologia , Postura/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia
13.
J Comp Neurol ; 518(8): 1157-75, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20148434

RESUMO

We followed the development of the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) system during locust embryogenesis in whole mount nervous systems and brain sections by using various cytochemical techniques. We visualized NO-sensitive neurons by cGMP immunofluorescence after incubation with an NO donor in the presence of the soluble guanylyl cyclase (sGC) activator YC-1 and the phosphodiesterase-inhibitor isobutyl-methyl-xanthine (IBMX). Central nervous system (CNS) cells respond to NO as early as 38% embryogenesis. By using the NADPH-diaphorase technique, we identified somata and neurites of possible NO-synthesizing cells in the CNS. The first NADPH-diaphorase-positive cell bodies appear around 40% embryogenesis in the brain and at 47% in the ventral nerve cord. The number of positive cells reaches the full complement of adult cells at 80%. In the brain, some structures, e.g., the mushroom bodies acquire NADPH-diaphorase staining only postembryonically. Immunolocalization of L-citrulline confirmed the presence of NOS in NADPH-diaphorase-stained neurons and, in addition, indicated enzymatic activity in vivo. In whole mount ventral nerve cords, citrulline immunolabeling was present in varying subsets of NADPH-diaphorase-positive cells, but staining was very variable and often weak. However, in a regeneration paradigm in which one of the two connectives between ganglia had been crushed, strong, reliable staining was observed as early as 60% embryogenesis. Thus, citrulline immunolabeling appears to reflect specific activity of NOS. However, in younger embryos, NOS may not always be constitutively active or may be so at a very low level, below the citrulline antibody detection threshold. For the CNS, histochemical markers for NOS do not provide conclusive evidence for a developmental role of this enzyme.


Assuntos
Locusta migratoria/embriologia , Neurônios/fisiologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Citrulina/metabolismo , GMP Cíclico/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ativadores de Enzimas/farmacologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/embriologia , Gânglios dos Invertebrados/metabolismo , Indazóis/farmacologia , Locusta migratoria/efeitos dos fármacos , NADPH Desidrogenase/metabolismo , Regeneração Nervosa , Sistema Nervoso/embriologia , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/efeitos dos fármacos , Neurópilo/efeitos dos fármacos , Neurópilo/fisiologia , Inibidores de Fosfodiesterase/farmacologia , Transdução de Sinais
14.
J Comp Neurol ; 508(1): 112-30, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18302155

RESUMO

The development and cellular distribution of the inhibitory neurotransmitter glycine in the spinal cord of the sea lamprey were studied by immunocytochemistry and double immunofluorescence and compared with the distribution of gamma-aminobutyric acid (GABA). Results in lamprey embryos and prolarvae reveal that the appearance of glycine-immunoreactive (-ir) spinal neurons precedes that of GABA-ir neurons. Throughout development, glycine-ir cells in the lateral and dorsomedial gray matter of the spinal cord are more numerous than the GABA-ir cells. Only a subset of these neurons shows colocalization of GABA and glycine, suggesting that they are primarily disparate neuronal populations. In contrast, most cerebrospinal fluid (CSF)-contacting neurons of the central canal walls are strongly GABA-ir, and only a portion of them are faintly glycine-ir. Some edge cells (lamprey intraspinal mechanoreceptors) were glycine-ir in larvae and adults. The glycine-ir and GABA-ir neuronal populations observed in the adult spinal cord were similar to those found in larvae. Comparison of glycine-ir and GABA-ir fibers coursing longitudinally in the spinal cord of adult lamprey revealed large differences in diameter between these two types of fiber. Commissural glycine-ir fibers appear in prolarvae and become numerous at larval stages, whereas crossed GABA-ir are scarce. Taken together, results in this primitive vertebrate indicate that the spinal glycinergic cells do not arise by biochemical shift of preexisting GABAergic cells but instead suggest that glycine is present in the earliest circuitry of the developing lamprey spinal cord, where it might act transiently as an excitatory transmitter.


Assuntos
Glicina/metabolismo , Neurônios/metabolismo , Petromyzon , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/metabolismo , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Larva , Neurônios/citologia , Petromyzon/anatomia & histologia , Petromyzon/embriologia , Petromyzon/crescimento & desenvolvimento
15.
J Comp Neurol ; 501(4): 568-81, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17278132

RESUMO

A substantial body of research has led to the recognition that the vestibular system participates in blood pressure modulation during active movements and changes in posture, and that this modulation is effected at least partly by the caudal vestibular nuclei. The I-4 isomer of imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator that is thought to be an endogenous regulator of general sympathetic drive, particularly systemic blood pressure. The present study employed immunofluorescence and light and electron microscopic immunocytochemistry to visualize IAA-RP in the vestibular nuclei of adult male rats. The results demonstrate IAA-RP immunolabeling of subpopulations of vestibular neurons in the descending nucleus and the caudal half of the medial nucleus, with scattered immunostained vestibular neurons also present more rostrally. On the basis of double immunofluorescence staining for IAA-RP and calbindin, many of these ribotide-immunoreactive neurons appear to be innervated by cerebellar Purkinje cell afferents. Ultrastructural observations in the caudal vestibular nuclei confirm the IAA-RP immunolocalization in cell bodies and dendritic processes, and in some myelinated axons and presynaptic boutons. The regional distribution of IAA-RP immunoreactivity corresponds to the location of vestibular neurons involved in autonomic functions. The presence of IAA-RP in those neurons suggests that they participate specifically in vestibulo-autonomic regulation of blood pressure. The localization of immunostain in processes and terminals suggests that vestibulo-autonomic activity is subject to local feedback control. Overall, the observations offer a chemoanatomic basis for understanding the vestibular side effects commonly experienced by patients treated with clonidine and other imidazoline-related drugs.


Assuntos
Neurônios/metabolismo , Ribosemonofosfatos/fisiologia , Núcleos Vestibulares/citologia , Animais , Calbindinas , Citrulina/metabolismo , Imidazóis , Imuno-Histoquímica/métodos , Masculino , Microscopia Imunoeletrônica/métodos , Neurônios/ultraestrutura , Ratos , Ratos Sprague-Dawley , Proteína G de Ligação ao Cálcio S100/metabolismo
16.
J Chem Neuroanat ; 33(1): 53-64, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17210242

RESUMO

Imidazoleacetic acid-ribotide (IAA-RP) is a putative neurotransmitter/modulator recently discovered in mammalian brain. The present study examines the distribution of IAA-RP in the rat CNS using a highly specific antiserum raised in rabbit against IAA-RP with immunostaining of aldehyde-fixed rat CNS. IAA-RP-immunoreactive neurons were present throughout the neuraxis; neuroglia were not labeled. In each region, only a subset of the neuronal pool was immunostained. In the forebrain, ribotide-immunolabeled neurons were common in neocortex, in hippocampal formation, and in subcortical structures including basal ganglia, thalamus and hypothalamus. Labeling was prominent in limbic areas including olfactory bulb, basal forebrain, pyriform cortex and amygdala. In the mid- and hindbrain, immunolabeled neurons were concentrated in specific nuclei and, in some areas, in specific subregions of those nuclei. Structures of the motor system, including cranial nerve motor nuclei, precerebellar nuclei, the substantia nigra, and the red nucleus were clearly labeled. Staining was intense in cells and/or puncta in the rostral and caudal ventrolateral medullary reticular formation, nucleus tractus solitarius and the caudal vestibular nuclear complex. Within neurons, the ribotide was found predominantly in somata and dendrites; some myelinated axons and occasional synaptic terminals were also immunostained. These data indicate that IAA-RP contributes to the neurochemical phenotype of many neuronal populations and further supports our suggestion that, in autonomic structures, IAA-RP may serve as a chemical mediator in complex circuits involved in blood pressure regulation and, more generally, sympathetic drive.


Assuntos
Química Encefálica/fisiologia , Imidazóis/metabolismo , Receptores Adrenérgicos/metabolismo , Receptores de Droga/metabolismo , Ribosemonofosfatos/metabolismo , Animais , Tronco Encefálico/metabolismo , Cerebelo/metabolismo , Ensaio de Imunoadsorção Enzimática , Hipocampo/metabolismo , Imidazóis/imunologia , Receptores de Imidazolinas , Imuno-Histoquímica , Prosencéfalo/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Ribosemonofosfatos/imunologia , Núcleos do Trigêmeo/metabolismo , Núcleos Vestibulares/metabolismo
17.
J Comp Neurol ; 499(5): 810-27, 2006 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-17048230

RESUMO

The neurochemistry of the retina of the larval and postmetamorphic sea lamprey was studied via immunocytochemistry using antibodies directed against the major candidate neurotransmitters [glutamate, glycine, gamma-aminobutyric acid (GABA), aspartate, dopamine, serotonin] and the neurotransmitter-synthesizing enzyme tyrosine hydroxylase. Immunoreactivity to rod opsin and calretinin was also used to distinguish some retinal cells. Two retinal regions are present in larvae: the central retina, with opsin-immunoreactive photoreceptors, and the lateral retina, which lacks photoreceptors and is mainly neuroblastic. We observed calretinin-immunostained ganglion cells in both retinal regions; immunolabeled bipolar cells were detected in the central retina only. Glutamate immunoreactivity was present in photoreceptors, ganglion cells, and bipolar cells. Faint to moderate glycine immunostaining was observed in photoreceptors and some cells of the ganglion cell/inner plexiform layer. No GABA-immunolabeled perikarya were observed. GABA-immunoreactive centrifugal fibers were present in the central and lateral retina. These centrifugal fibers contacted glutamate-immunostained ganglion cells. No aspartate, serotonin, dopamine, or TH immunoreactivity was observed in larvae, whereas these molecules, as well as GABA, glycine, and glutamate, were detected in neurons of the retina of recently transformed lamprey. Immunoreactivity to GABA was observed in outer horizontal cells, some bipolar cells, and numerous amacrine cells, whereas immunoreactivity to glycine was found in amacrine cells and interplexiform cells. Dopamine and serotonin immunoreactivity was found in scattered amacrine cells. Amacrine and horizontal cells did not express classical neurotransmitters (with the possible exception of glycine) during larval life, so transmitter-expressing cells of the larval retina appear to participate only in the vertical processing pathway.


Assuntos
Ácido Glutâmico/análise , Glicina/análise , Larva , Petromyzon , Retina/química , Ácido gama-Aminobutírico/análise , Animais , Encéfalo/anatomia & histologia , Química Encefálica , Calbindina 2 , Imuno-Histoquímica , Larva/anatomia & histologia , Larva/química , Petromyzon/anatomia & histologia , Petromyzon/crescimento & desenvolvimento , Petromyzon/metabolismo , Retina/citologia , Retina/crescimento & desenvolvimento , Opsinas de Bastonetes/análise , Proteína G de Ligação ao Cálcio S100/análise , Sensibilidade e Especificidade
18.
Cell Tissue Res ; 323(2): 273-81, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16158323

RESUMO

The present immunocytochemical study provides evidence of a previously unrecognized, rich, gamma-aminobutyric acid (GABA)-ergic innervation of the pineal organ in the dogfish (Scyliorhinus canicula). In this elasmobranch, the pineal primordium is initially detected at embryonic stage 24 and grows to form a long pineal tube by stage 28. Glutamic acid decarboxylase (GAD)-immunoreactive (-ir) fibers were first observed at stage 26, and by stage 28, thin GAD-ir fibers were detectable at the base of the pineal neuroepithelium. In pre-hatchling embryos, most fibers gave rise to GAD-ir boutons that were localized in the basal region of the neuroepithelium, although a smaller number of labeled terminals ascended to the pineal lumen. A few pale GAD-ir perikarya were observed within the pineal organ of stage 29 embryos, but GAD-ir perikarya were not observed at other developing stages or in adults. In contrast, GABA immunocytochemistry revealed the presence of GABAergic perikarya and fibers in the pineal organ of late stage embryos and adults. Although high densities of GABAergic cells were observed in the paracommissural pretectum, posterior tubercle, and tegmentum of dogfish embryos (regions previously demonstrated to contain pinealopetal cells), the presence of GABA-ir perikarya in the pineal organ strongly suggests that the rich GABAergic innervation of the elasmobranch pineal organ is intrinsic. This contrasts with the central origin of GABAergic fibers in the pineal gland of some mammals.


Assuntos
Cação (Peixe)/fisiologia , Imuno-Histoquímica , Glândula Pineal/embriologia , Glândula Pineal/inervação , Ácido gama-Aminobutírico/metabolismo , Animais , Biomarcadores/metabolismo , Glutamato Descarboxilase/metabolismo , Fibras Nervosas/enzimologia , Glândula Pineal/metabolismo , Terminações Pré-Sinápticas/metabolismo
19.
Proc Natl Acad Sci U S A ; 101(44): 15766-71, 2004 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-15505229

RESUMO

The vestibular semicircular canals respond to angular acceleration that is integrated to angular velocity by the biofluid mechanics of the canals and is the primary origin of afferent responses encoding velocity. Surprisingly, some afferents actually report angular acceleration. Our data indicate that hair-cell/afferent synapses introduce a mathematical derivative in these afferents that partially cancels the biomechanical integration and results in discharge rates encoding angular acceleration. We examined the role of convergent synaptic inputs from hair cells to this mathematical differentiation. A significant reduction in the order of the differentiation was observed for low-frequency stimuli after gamma-aminobutyric acid type B receptor antagonist administration. Results demonstrate that gamma-aminobutyric acid participates in shaping the temporal dynamics of afferent responses.


Assuntos
Batracoidiformes/fisiologia , Células Ciliadas Vestibulares/fisiologia , Aceleração , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Eletrofisiologia , Feminino , Antagonistas de Receptores de GABA-B , Células Ciliadas Vestibulares/efeitos dos fármacos , Masculino , Modelos Neurológicos , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Receptores de GABA-B/fisiologia , Ácido gama-Aminobutírico/fisiologia
20.
Proc Natl Acad Sci U S A ; 101(37): 13677-82, 2004 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-15365189

RESUMO

We identified the previously unknown structures of ribosylated imidazoleacetic acids in rat, bovine, and human tissues to be imidazole-4-acetic acid-ribotide (IAA-RP) and its metabolite, imidazole-4-acetic acid-riboside. We also found that IAA-RP has physicochemical properties similar to those of an unidentified substance(s) extracted from mammalian tissues that interacts with imidazol(in)e receptors (I-Rs). ["Imidazoline," by consensus (International Union of Pharmacology), includes imidazole, imidazoline, and related compounds. We demonstrate that the imidazole IAA-RP acts at I-Rs, and because few (if any) imidazolines exist in vivo, we have adopted the term "imidazol(in)e-Rs."] The latter regulate multiple functions in the CNS and periphery. We now show that IAA-RP (i) is present in brain and tissue extracts that exhibit I-R activity; (ii) is present in neurons of brainstem areas, including the rostroventrolateral medulla, a region where drugs active at I-Rs are known to modulate blood pressure; (iii) is present within synaptosome-enriched fractions of brain where its release is Ca(2+)-dependent, consistent with transmitter function; (iv) produces I-R-linked effects in vitro (e.g., arachidonic acid and insulin release) that are blocked by relevant antagonists; and (v) produces hypertension when microinjected into the rostroventrolateral medulla. Our data also suggest that IAA-RP may interact with a novel imidazol(in)e-like receptor at this site. We propose that IAA-RP is a neuroregulator acting via I-Rs.


Assuntos
Imidazóis/farmacologia , Receptores de Droga/agonistas , Ribosemonofosfatos/farmacologia , Medula Suprarrenal/metabolismo , Animais , Anticorpos/imunologia , Especificidade de Anticorpos , Ácido Araquidônico/metabolismo , Tronco Encefálico/citologia , Cálcio/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Hipertensão/induzido quimicamente , Imidazóis/química , Imidazóis/imunologia , Receptores de Imidazolinas , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Isomerismo , Ligantes , Estrutura Molecular , Neurônios/metabolismo , Células PC12 , Ratos , Receptores de Droga/metabolismo , Ribosemonofosfatos/química , Ribosemonofosfatos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA