Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2203660119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858448

RESUMO

Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme's relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)-bound RT/double-stranded DNA (dsDNA), RT/RNA-DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3'-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.


Assuntos
Fármacos Anti-HIV , Farmacorresistência Viral , Transcriptase Reversa do HIV , HIV-1 , Piridonas , Inibidores da Transcriptase Reversa , Rilpivirina , Triazóis , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Microscopia Crioeletrônica , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , Mutação , Nitrilas/farmacologia , Conformação Proteica , Piridonas/química , Piridonas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Rilpivirina/química , Rilpivirina/farmacologia , Triazóis/química , Triazóis/farmacologia
2.
Nat Commun ; 12(1): 7127, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880240

RESUMO

HIV-1 reverse transcriptase (RT) slides over an RNA/DNA or dsDNA substrate while copying the viral RNA to a proviral DNA. We report a crystal structure of RT/dsDNA complex in which RT overstepped the primer 3'-end of a dsDNA substrate and created a transient P-pocket at the priming site. We performed a high-throughput screening of 300 drug-like fragments by X-ray crystallography that identifies two leads that bind the P-pocket, which is composed of structural elements from polymerase active site, primer grip, and template-primer that are resilient to drug-resistance mutations. Analogs of a fragment were synthesized, two of which show noticeable RT inhibition. An engineered RT/DNA aptamer complex could trap the transient P-pocket in solution, and structures of the RT/DNA complex were determined in the presence of an inhibitory fragment. A synthesized analog bound at P-pocket is further analyzed by single-particle cryo-EM. Identification of the P-pocket within HIV RT and the developed structure-based platform provide an opportunity for the design new types of polymerase inhibitors.


Assuntos
DNA/química , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/efeitos dos fármacos , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Modelos Moleculares , Conformação Proteica , RNA
3.
STAR Protoc ; 2(2): 100431, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870232

RESUMO

In yeast mitochondria, transcription initiation requires assembly of mitochondrial RNA polymerase and transcription initiation factor MTF1 at the DNA promoter initiation site. This protocol describes the purification of the component proteins and assembly of partially melted and fully melted initiation complex states. Both states co-exist in equilibrium in the same sample as seen by cryoelectron microscopy (cryo-EM) and allow elucidation of MTF1's structural roles in controlling the transition into elongation. We further outline how analysis of the complex by light scattering, thermal shift assay, and ultrafiltration assay exhibits reproducible results. For complete details on the use and execution of this protocol, please refer to De Wijngaert et al. (2021).


Assuntos
Microscopia Crioeletrônica/métodos , RNA Polimerases Dirigidas por DNA , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
4.
Mol Cell ; 81(2): 268-280.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278362

RESUMO

Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.


Assuntos
DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , RNA Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Sítios de Ligação , Microscopia Crioeletrônica , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA Mitocondrial/química , RNA Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Iniciação da Transcrição Genética
5.
Proc Natl Acad Sci U S A ; 116(15): 7308-7313, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30902895

RESUMO

The initiation phase of HIV reverse transcription has features that are distinct from its elongation phase. The first structure of a reverse transcription initiation complex (RTIC) that trapped the complex after incorporation of one ddCMP nucleotide was published recently [Larsen KP, et al. (2018) Nature 557:118-122]. Here we report a crystal structure of a catalytically active HIV-1 RT/dsRNA complex that mimics the state of the RTIC before the first nucleotide incorporation. The structure reveals that the dsRNA-bound conformation of RT is closer to that of RT bound to a nonnucleoside RT inhibitor (NNRTI) and dsDNA; a hyperextended thumb conformation helps to accommodate the relatively wide dsRNA duplex. The RNA primer 3' end is positioned 5 Å away from the polymerase site; however, unlike in an NNRTI-bound state in which structural elements of RT restrict the movement of the primer, the primer terminus of dsRNA is not blocked from reaching the active site of RT. The observed structural changes and energetic cost of bringing the primer 3' end to the priming site are hypothesized to explain the slower nucleotide incorporation rate of the RTIC. An unusual crystal lattice interaction of dsRNA with its symmetry mate is reminiscent of the RNA architecture within the extended vRNA-tRNALys3 in the RTIC. This RT/dsRNA complex captures the key structural characteristics and components of the RTIC, including the RT conformational changes and interactions with the dsRNA primer-binding site region, and these features have implications for better understanding of RT initiation.


Assuntos
Transcriptase Reversa do HIV/química , HIV-1/enzimologia , RNA de Cadeia Dupla/química , RNA de Transferência de Lisina/química , RNA Viral/química , Cristalografia por Raios X
6.
Protein Sci ; 28(3): 587-597, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30499174

RESUMO

Stavudine (d4T, 2',3'-didehydro-2',3'-dideoxythymidine) was one of the first chain-terminating nucleoside analogs used to treat HIV infection. We present the first structure of the active, triphosphate form of d4T (d4TTP) bound to a catalytic complex of HIV-1 RT/dsDNA template-primer. We also present a new strategy for disulfide (S-S) chemical cross-linking between N6 of a modified adenine at the second overhang base to I63C in the fingers subdomain of RT. The cross-link site is upstream of the duplex-binding region of RT, however, the structure is very similar to published RT structures with cross-linking to Q258C in the thumb, which suggests that cross-linking at either site does not appreciably perturb the RT/DNA structures. RT has a catalytic maximum at pH 7.5. We determined the X-ray structures of the I63C-RT/dsDNA/d4TTP cross-linked complexes at pH 7, 7.5, 8, 8.5, 9, and 9.5. We found small (~0.5 Å), pH-dependent motions of the fingers subdomain that folds in to form the dNTP-binding pocket. We propose that the pH-activity profile of RT relates to this motion of the fingers. Due to side effects of neuropathy and lipodystrophy, use of d4T has been stopped in most countries, however, chemical modification of d4T might lead to the development of a new class of nucleoside analogs targeting RNA and DNA polymerases.


Assuntos
Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Inibidores da Transcriptase Reversa/farmacologia , Estavudina/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , HIV-1/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Inibidores da Transcriptase Reversa/química , Estavudina/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-28396546

RESUMO

HIV-1 reverse transcriptase (RT) is targeted by multiple drugs. RT mutations that confer resistance to nucleoside RT inhibitors (NRTIs) emerge during clinical use. Q151M and four associated mutations, A62V, V75I, F77L, and F116Y, were detected in patients failing therapies with dideoxynucleosides (didanosine [ddI], zalcitabine [ddC]) and/or zidovudine (AZT). The cluster of the five mutations is referred to as the Q151M complex (Q151Mc), and an RT or virus containing Q151Mc exhibits resistance to multiple NRTIs. To understand the structural basis for Q151M and Q151Mc resistance, we systematically determined the crystal structures of the wild-type RT/double-stranded DNA (dsDNA)/dATP (complex I), wild-type RT/dsDNA/ddATP (complex II), Q151M RT/dsDNA/dATP (complex III), Q151Mc RT/dsDNA/dATP (complex IV), and Q151Mc RT/dsDNA/ddATP (complex V) ternary complexes. The structures revealed that the deoxyribose rings of dATP and ddATP have 3'-endo and 3'-exo conformations, respectively. The single mutation Q151M introduces conformational perturbation at the deoxynucleoside triphosphate (dNTP)-binding pocket, and the mutated pocket may exist in multiple conformations. The compensatory set of mutations in Q151Mc, particularly F116Y, restricts the side chain flexibility of M151 and helps restore the DNA polymerization efficiency of the enzyme. The altered dNTP-binding pocket in Q151Mc RT has the Q151-R72 hydrogen bond removed and has a switched conformation for the key conserved residue R72 compared to that in wild-type RT. On the basis of a modeled structure of hepatitis B virus (HBV) polymerase, the residues R72, Y116, M151, and M184 in Q151Mc HIV-1 RT are conserved in wild-type HBV polymerase as residues R41, Y89, M171, and M204, respectively; functionally, both Q151Mc HIV-1 and wild-type HBV are resistant to dideoxynucleoside analogs.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Didanosina/uso terapêutico , Produtos do Gene pol/antagonistas & inibidores , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Inibidores da Transcriptase Reversa/uso terapêutico , Zalcitabina/uso terapêutico , Zidovudina/uso terapêutico , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/genética , Vírus da Hepatite B/genética , Humanos , Mutação/genética , Conformação Proteica , Estrutura Quaternária de Proteína
8.
Proc Natl Acad Sci U S A ; 112(11): 3475-80, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25733891

RESUMO

Polymerases have a structurally highly conserved negatively charged amino acid motif that is strictly required for Mg(2+) cation-dependent catalytic incorporation of (d)NTP nucleotides into nucleic acids. Based on these characteristics, a nucleoside monophosphonate scaffold, α-carboxy nucleoside phosphonate (α-CNP), was designed that is recognized by a variety of polymerases. Kinetic, biochemical, and crystallographic studies with HIV-1 reverse transcriptase revealed that α-CNPs mimic the dNTP binding through a carboxylate oxygen, two phosphonate oxygens, and base-pairing with the template. In particular, the carboxyl oxygen of the α-CNP acts as the potential equivalent of the α-phosphate oxygen of dNTPs and two oxygens of the phosphonate group of the α-CNP chelate Mg(2+), mimicking the chelation by the ß- and γ-phosphate oxygens of dNTPs. α-CNPs (i) do not require metabolic activation (phosphorylation), (ii) bind directly to the substrate-binding site, (iii) chelate one of the two active site Mg(2+) ions, and (iv) reversibly inhibit the polymerase catalytic activity without being incorporated into nucleic acids. In addition, α-CNPs were also found to selectively interact with regulatory (i.e., allosteric) Mg(2+)-dNTP-binding sites of nucleos(t)ide-metabolizing enzymes susceptible to metabolic regulation. α-CNPs represent an entirely novel and broad technological platform for the development of specific substrate active- or regulatory-site inhibitors with therapeutic potential.


Assuntos
Nucleosídeos/farmacologia , Nucleotídeos/farmacologia , Organofosfonatos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sequência de Bases , Biocatálise/efeitos dos fármacos , Extratos Celulares , DNA Polimerase Dirigida por DNA/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Células HeLa , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Nucleosídeos/química , Nucleotídeos/química , Organofosfonatos/química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Estereoisomerismo
9.
Nucleic Acids Res ; 42(12): 8125-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880687

RESUMO

In synthesizing a double-stranded DNA from viral RNA, HIV-1 reverse transcriptase (RT) generates an RNA/DNA intermediate. RT also degrades the RNA strand and synthesizes the second DNA strand. The RNase H active site of RT functions as a nuclease to cleave the RNA strand; however, the structural basis for endonucleolytic cleavage of the RNA strand remains elusive. Here we report crystal structures of RT-RNA/DNA-dATP and RT-RNA/DNA-nevirapine (NVP) ternary complexes at 2.5 and 2.9 Å resolution, respectively. The polymerase region of RT-RNA/DNA-dATP complex resembles DNA/DNA ternary complexes apart from additional interactions of 2'-OH groups of the RNA strand. The conformation and binding of RNA/DNA deviates significantly after the seventh nucleotide versus a DNA/DNA substrate. Binding of NVP slides the RNA/DNA non-uniformly over RT, and the RNA strand moves closer to the RNase H active site. Two additional structures, one containing a gapped RNA and another a bulged RNA, reveal that conformational changes of an RNA/DNA and increased interactions with the RNase H domain, including the interaction of a 2'-OH with N474, help to position the RNA nearer to the active site. The structures and existing biochemical data suggest a nucleic acid conformation-induced mechanism for guiding cleavage of the RNA strand.


Assuntos
Fármacos Anti-HIV/química , DNA Viral/química , Nucleotídeos de Desoxiadenina/química , Transcriptase Reversa do HIV/química , Nevirapina/química , RNA Viral/química , Inibidores da Transcriptase Reversa/química , DNA Viral/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/metabolismo , Ribonuclease H/metabolismo
10.
Rev Gastroenterol Peru ; 34(1): 63-8, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-24721961

RESUMO

We present a diabetic patient who developed severe acute pancreatitis associated to gallbladder gangrene, in this case we assessed the applicability of classification criteria and management of the pathways for acute pancreatitis and also we suggest some topics that could be investigated in the future.


Assuntos
Vesícula Biliar/patologia , Pancreatite/complicações , Doença Aguda , Idoso , Gangrena/complicações , Humanos , Masculino , Índice de Gravidade de Doença
11.
Rev. gastroenterol. Perú ; 34(1): 63-68, ene. 2014. ilus, tab
Artigo em Espanhol | LILACS, LIPECS | ID: lil-717361

RESUMO

Se presenta el caso un paciente diabético que desarrolló un cuadro de pancreatitis aguda grave asociada a gangrena vesicular, en el que se evaluó la aplicabilidad de los criterios de clasificación y manejo de la hoja de ruta para pancreatitis aguda, así mismo se proponen algunos tópicos que pudieran ser investigados a futuro.


We present a diabetic patient who developed severe acute pancreatitis associated to gallbladder gangrene, in this case we assessed the applicability of classification criteria and management of the pathways for acute pancreatitis and also we suggest some topics that could be investigated in the future.


Assuntos
Idoso , Humanos , Masculino , Vesícula Biliar/patologia , Pancreatite/complicações , Doença Aguda , Gangrena/complicações , Índice de Gravidade de Doença
12.
Nat Struct Mol Biol ; 19(2): 253-9, 2012 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-22266819

RESUMO

Combinations of nucleoside and non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT) are widely used in anti-AIDS therapies. Five NNRTIs, including nevirapine, are clinical drugs; however, the molecular mechanism of inhibition by NNRTIs is not clear. We determined the crystal structures of RT-DNA-nevirapine, RT-DNA, and RT-DNA-AZT-triphosphate complexes at 2.85-, 2.70- and 2.80-Å resolution, respectively. The RT-DNA complex in the crystal could bind nevirapine or AZT-triphosphate but not both. Binding of nevirapine led to opening of the NNRTI-binding pocket. The pocket formation caused shifting of the 3' end of the DNA primer by ~5.5 Å away from its polymerase active site position. Nucleic acid interactions with fingers and palm subdomains were reduced, the dNTP-binding pocket was distorted and the thumb opened up. The structures elucidate complementary roles of nucleoside and non-nucleoside inhibitors in inhibiting RT.


Assuntos
DNA Viral/química , DNA Viral/metabolismo , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , Nevirapina/química , Nevirapina/metabolismo , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Cristalografia por Raios X , Transcriptase Reversa do HIV/antagonistas & inibidores , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
13.
J Biol Chem ; 283(38): 25913-9, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18614542

RESUMO

The photoreceptor phosphodiesterase (PDE6) regulates the intracellular levels of the second messenger cGMP in the outer segments of cone and rod photoreceptor cells. PDE6 contains two regulatory GAF domains, of which one (GAF A) binds cGMP and regulates the activity of the PDE6 holoenzyme. To increase our understanding of this allosteric regulation mechanism, we present the 2.6A crystal structure of the cGMP-bound GAF A domain of chicken cone PDE6. Nucleotide specificity appears to be provided in part by the orientation of Asn-116, which makes two hydrogen bonds to the guanine ring of cGMP but is not strictly conserved among PDE6 isoforms. The isolated PDE6C GAF A domain is monomeric and does not contain sufficient structural determinants to form a homodimer as found in full-length PDE6C. A highly conserved surface patch on GAF A indicates a potential binding site for the inhibitory subunit Pgamma. NMR studies reveal that the apo-PDE6C GAF A domain is structured but adopts a significantly altered structural state indicating a large conformational change with rearrangement of secondary structure elements upon cGMP binding. The presented crystal structure will help to define the cGMP-dependent regulation mechanism of the PDE6 holoenzyme and its inhibition through Pgamma binding.


Assuntos
GMP Cíclico/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/química , Sítio Alostérico , Sequência de Aminoácidos , Animais , Galinhas , Cristalografia por Raios X , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
14.
Proc Natl Acad Sci U S A ; 102(8): 3088-92, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15708972

RESUMO

The tandem GAF domains from the cyanobacterium Anabaena PCC7120 cyaB2 adenylyl cyclase form an antiparallel dimer with cAMP bound to all four binding sites. cAMP binding causes highly cooperative allosteric enzyme activation (>500-fold; EC(50) = 1 microM; Hill coefficient >2.0). The cyaB2 GAF domains, like those of the cyclic nucleotide phosphodiesterases (PDEs), contain conserved NKFDE motifs that when mutated in the PDEs abrogate cyclic nucleotide binding. We mutated the aspartic acids within this motif in cyaB2 to determine which domains were required for signaling. Constructs containing an Asp/Ala mutation in either GAF domain still showed positive cooperative cAMP stimulation but with reduced Hill coefficients. The cyaB2 GAF domain NKFDE motifs contain inserts of 14 (GAF-A) and 19 (GAF-B) amino acids not present in PDE2 or cyaB1. Constructs having these inserts deleted could still be activated by cAMP (23- to 100-fold) but lost all positive cooperative activation, suggesting that the inserts play an important role in domain interaction and/or stabilization of the cAMP-binding pockets. In the shortened constructs, even those with a single Asp/Ala mutation in the NKFDE motifs could still be activated by cAMP. However, in a double Asp/Ala mutant of the shortened construct, stimulation by cAMP was almost completely lost, and the EC(50) shifted far to the right. Overall, the data suggest that in GAF domains without these inserts, only the canonical lysine:aspartate salt bridge keeps the alpha4-helix and the alpha4-beta5 linker that close over the cyclic nucleotide properly oriented, thereby stabilizing the binding pocket. The cyaB2 GAF ensemble appears to be an evolutionary intermediate where both GAF domains still participate in allosteric activation by cAMP.


Assuntos
Adenilil Ciclases/química , Anabaena/enzimologia , AMP Cíclico/metabolismo , Adenilil Ciclases/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Dimerização , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 102(8): 3082-7, 2005 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-15708973

RESUMO

In several species, GAF domains, which are widely expressed small-molecule-binding domains that regulate enzyme activity, are known to bind cyclic nucleotides. However, the molecular mechanism by which cyclic nucleotide binding affects enzyme activity is not known for any GAF domain. In the cyanobacterium, Anabaena, the cyaB1 and cyaB2 genes encode adenylyl cyclases that are stimulated by binding of cAMP to their N-terminal GAF domains. Replacement of the tandem GAF-A/B domains in cyaB1 with the mammalian phosphodiesterase 2A GAF-A/B tandem domains allows regulation of the chimeric protein by cGMP, suggesting a highly conserved mechanism of activation. Here, we describe the 1.9-A crystal structure of the tandem GAF-A/B domains of cyaB2 with bound cAMP and compare it to the previously reported structure of the PDE2A GAF-A/B. Unexpectedly, the cyaB2 GAF-A/B dimer is antiparallel, unlike the parallel dimer of PDE2A. Moreover, there is clear electron density for cAMP in both GAF-A and -B, whereas in PDE2A, cGMP is found only in GAF-B. Phosphate and ribose group contacts are similar to those in PDE2A. However, the purine-binding pockets appear very different from that in PDE2A GAF-B. Differences in the beta2-beta3 loop suggest that this loop confers much of the ligand specificity in this and perhaps in many other GAF domains. Finally, a conserved asparagine appears to be a new addition to the signature NKFDE motif, and a mechanism for this motif to stabilize the cNMP-binding pocket is proposed.


Assuntos
Adenilil Ciclases/química , Anabaena/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalização , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Dimerização , Ativação Enzimática , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Dobramento de Proteína
16.
J Biol Chem ; 279(46): 48143-51, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15331594

RESUMO

Structural studies on photoreceptor phosphodiesterases type 6 (PDE6s) have been hampered by an inability to express and purify substantial amounts of enzyme. Here we describe bacterial expression and characterization of the chicken cone PDE6 regulatory GAF-A and GAF-B domains. High affinity cGMP binding was found only for GAF-A as predicted from sequence alignments with the GAF domains of PDE2 and PDE5. A homology model of the GAF-A domain of chicken cone PDE6 based on the crystal structure of mouse PDE2A GAF-B was used to identify residues likely to make contact with cGMP. Alanine mutagenesis of 4 of these residues (F123A, D169A, T172A, and T176A) showed that each was absolutely required for cGMP binding. Three of these residues map to the H4 helical structure of the GAF-A domain indicating this region as a key structural component for cGMP binding. Mutagenesis of another residue, S97A, decreased cGMP binding affinity 5-fold. Finally mutagenesis of Glu-124 indicated that it is responsible for part but not all of the high specificity for cGMP binding to PDE6 GAF-A. Since little data is available on the properties of the chicken cone PDE6 holoenzyme, we also characterized the native PDEs of chicken retina. Two histone-activated PDE6 peaks were separated by ion exchange chromatography and identified by mass spectrometry as cone and rod photoreceptor PDE6s, respectively. Both of these PDEs had cGMP binding and kinetic properties similar to their corresponding bovine photoreceptor PDEs. Moreover the cGMP binding properties of chicken cone PDE6 holoenzyme were very similar to those of the bacterially expressed individual GAF-A or GAF-A/B domains.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , GMP Cíclico/metabolismo , Conformação Proteica , Células Fotorreceptoras Retinianas Cones/enzimologia , 3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , 3',5'-GMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/isolamento & purificação , Sequência de Aminoácidos , Animais , Bovinos , Galinhas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/isolamento & purificação , Proteínas do Olho/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência
17.
J Biol Chem ; 279(36): 37928-38, 2004 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-15210692

RESUMO

Binding of cGMP to the GAF-B domain of phosphodiesterase 2A allosterically activates catalytic activity. We report here a series of mutagenesis studies on the GAF-B domain of PDE2A that support a novel mechanism for molecular recognition of cGMP. Alanine mutations of Phe-438, Asp-439, and Thr-488, amino acids that interact with the pyrimidine ring, decrease cGMP affinity slightly but increase cAMP affinity by up to 8-fold. Each interaction is required to provide for cAMP/cGMP specificity. Mutations of any of the residues that interact with the phosphate-ribose moiety or the imidazole ring abolish cGMP binding. Thus, residues that interact with the pyrimidine ring collectively control cAMP/cGMP specificity, whereas residues that bind the phosphate-ribose moiety and imidazole ring are critical for high affinity binding. Similar decreases in binding were found for mutations made in a bacterially expressed GAF-A/B plus catalytic domain construct. Because these constructs had very high catalytic activity, it appears that these mutations did not cause a global denaturation. The affinities of cAMP and cGMP for wild-type GAF-B alone were approximately 4-fold greater than for the holoenzyme, suggesting that the presence of neighboring domains alters the conformation of GAF-B. More importantly, the PDE2A GAF-B, GAF-A/B, GAF-A/B+C domains, and holoenzyme all bind cGMP with much higher affinity than has previously been reported. This high affinity suggests that cGMP binding to PDE2 GAF-B activates the enzyme rapidly, stoichiometrically, and in an all or none fashion, rather than variably over a large range of cyclic nucleotide concentrations.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Animais , Sequência de Bases , Ligação Competitiva , Catálise , Clonagem Molecular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Primers do DNA , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida
18.
J Biol Chem ; 278(12): 10594-601, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12531898

RESUMO

Retinal rod cGMP phosphodiesterase (PDE6 family) is the effector enzyme in the vertebrate visual transduction cascade. Unlike other known PDEs that form catalytic homodimers, the rod PDE6 catalytic core is a heterodimer composed of alpha and beta subunits. A system for efficient expression of rod PDE6 is not available. Therefore, to elucidate the structural basis for specific dimerization of rod PDE6, we constructed a series of chimeric proteins between PDE6alphabeta and PDE5, which contain the N-terminal GAFa/GAFb domains, or portions thereof, of the rod enzyme. These chimeras were co-expressed in Sf9 cells in various combinations as His-, myc-, or FLAG-tagged proteins. Dimerization of chimeric PDEs was assessed using gel filtration and sucrose gradient centrifugation. The composition of formed dimeric enzymes was analyzed with Western blotting and immunoprecipitation. Consistent with the selectivity of PDE6 dimerization in vivo, efficient heterodimerization was observed between the GAF regions of PDE6alpha and PDE6beta with no significant homodimerization. In addition, PDE6alpha was able to form dimers with the cone PDE6alpha' subunit. Furthermore, our analysis indicated that the PDE6 GAFa domains contain major structural determinants for the affinity and selectivity of dimerization of PDE6 catalytic subunits. The key dimerization selectivity module of PDE6 has been localized to a small segment within the GAFa domains, PDE6alpha-59-74/PDE6beta-57-72. This study provides tools for the generation of the homodimeric alphaalpha and betabeta enzymes that will allow us to address the question of functional significance of the unique heterodimerization of rod PDE6.


Assuntos
Diester Fosfórico Hidrolases/química , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Bovinos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Dimerização , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/metabolismo , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química
19.
Proc Natl Acad Sci U S A ; 99(20): 13260-5, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12271124

RESUMO

Cyclic nucleotide phosphodiesterases (PDEs) regulate all pathways that use cGMP or cAMP as a second messenger. Five of the 11 PDE families have regulatory segments containing GAF domains, 3 of which are known to bind cGMP. In PDE2 binding of cGMP to the GAF domain causes an activation of the catalytic activity by a mechanism that apparently is shared even in the adenylyl cyclase of Anabaena, an organism separated from mouse by 2 billion years of evolution. The 2.9-A crystal structure of the mouse PDE2A regulatory segment reported in this paper reveals that the GAF A domain functions as a dimerization locus. The GAF B domain shows a deeply buried cGMP displaying a new cGMP-binding motif and is the first atomic structure of a physiological cGMP receptor with bound cGMP. Moreover, this cGMP site is located well away from the region predicted by previous mutagenesis and structural genomic approaches.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Dimerização , Relação Dose-Resposta a Droga , Camundongos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
20.
Mol Interv ; 2(5): 317-23, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14993386

RESUMO

GAF domains represent one of the largest families of small-molecule binding units present in nature. The first mammalian GAF domains discovered were the cGMP-binding regulatory domains of several cyclic nucleotide phosphodiesterases (PDEs). The crystal structure of the PDE2A GAF domains has provided our first look at the architecture of the binding site for the second messenger cGMP. The topology of this site differs greatly from all other previously determined cyclic nucleotide binding sites. In PDE2A, cGMP binds to a well-defined pocket in one of the two GAF domains that is analogous to the ligand-binding pocket of the distantly related PAS domains of photoactive yellow protein and FixL. The consensus cGMP-binding motif suggests strongly that only certain GAF domains will bind cGMP. Although the detailed mechanism for how cGMP binding to the GAF domain regulates catalysis remains to be determined, recent data from a GAF domain-containing cAMP-stimulated adenylyl cyclase from Anabaena suggest a mechanism conserved across two billion years of evolution. Because of their unique ligand-binding topologies, the GAF domains of PDEs are likely to offer good new targets for rational drug design.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Evolução Molecular , Nucleotídeos Cíclicos , Estrutura Terciária de Proteína , Animais , Sítios de Ligação , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA