Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell Rep ; 43(7): 114390, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38900636

RESUMO

Timed feeding drives adipose browning, although the integrative mechanisms for the same remain unclear. Here, we show that twice-a-night (TAN) feeding generates biphasic oscillations of circulating insulin and leptin, representing their entrainment by timed feeding. Insulin and leptin surges lead to marked cellular, functional, and metabolic remodeling of subcutaneous white adipose tissue (sWAT), resulting in increased energy expenditure. Single-cell RNA-sequencing (scRNA-seq) analyses and flow cytometry demonstrate a role for insulin and leptin surges in innate lymphoid type 2 (ILC2) cell recruitment and sWAT browning, since sWAT depot denervation or loss of leptin or insulin receptor signaling or ILC2 recruitment each dampens TAN feeding-induced sWAT remodeling and energy expenditure. Consistently, recreating insulin and leptin oscillations via once-a-day timed co-injections is sufficient to favorably remodel innervated sWAT. Innervation is necessary for sWAT remodeling, since denervation of sWAT, but not brown adipose tissue (BAT), blocks TAN-induced sWAT remodeling and resolution of inflammation. In sum, reorganization of nutrient-sensitive pathways remodels sWAT and drives the metabolic benefits of timed feeding.

2.
Cell Stem Cell ; 31(3): 378-397.e12, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38402617

RESUMO

Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.


Assuntos
Hematopoese , Ferro , Hematopoese/genética , Ferro/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular
3.
Nat Cell Biol ; 25(7): 989-1003, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386153

RESUMO

Fasting triggers diverse physiological adaptations including increases in circulating fatty acids and mitochondrial respiration to facilitate organismal survival. The mechanisms driving mitochondrial adaptations and respiratory sufficiency during fasting remain incompletely understood. Here we show that fasting or lipid availability stimulates mTORC2 activity. Activation of mTORC2 and phosphorylation of its downstream target NDRG1 at serine 336 sustains mitochondrial fission and respiratory sufficiency. Time-lapse imaging shows that NDRG1, but not the phosphorylation-deficient NDRG1Ser336Ala mutant, engages with mitochondria to facilitate fission in control cells, as well as in those lacking DRP1. Using proteomics, a small interfering RNA screen, and epistasis experiments, we show that mTORC2-phosphorylated NDRG1 cooperates with small GTPase CDC42 and effectors and regulators of CDC42 to orchestrate fission. Accordingly, RictorKO, NDRG1Ser336Ala mutants and Cdc42-deficient cells each display mitochondrial phenotypes reminiscent of fission failure. During nutrient surplus, mTOR complexes perform anabolic functions; however, paradoxical reactivation of mTORC2 during fasting unexpectedly drives mitochondrial fission and respiration.


Assuntos
Dinâmica Mitocondrial , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Transporte/metabolismo , Fosforilação , Jejum
4.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193955

RESUMO

In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.


Assuntos
Neoplasias da Mama/metabolismo , Plasticidade Celular/fisiologia , Glutationa Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Glutationa Peroxidase/genética , Glutationa Peroxidase/fisiologia , Glicólise , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo/fisiologia , Camundongos , Camundongos Nus , Neovascularização Patológica/genética , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cancers (Basel) ; 14(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35158994

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Poly (ADP-ribose) polymerase inhibitors (PARPi) represent a new class of anti-neoplastic drugs. In the current study, we have characterized the mechanism by which glioblastoma cells evade the effect of PARPi as anti-tumor agents. We have found that suppression of PARP activity exerts an anti-stemness effect and has a dual impact on autophagy, inducing its activation in the first 24 h (together with down-regulation of the pro-survival mTOR pathway) and preventing autophagosomes fusion to lysosomes at later time-points, in primary glioma cells. In parallel, PARPi triggered the synthesis of lipid droplets (LDs) through ACC-dependent activation of de novo fatty acids (FA) synthesis. Notably, inhibiting ß-oxidation and blocking FA utilization, increased PARPi-induced glioma cell death while treatment with oleic acid (OA) prevented the anti-glioma effect of PARPi. Moreover, LDs fuel glioma cells by inducing pro-survival lipid consumption as confirmed by quantitation of oxygen consumption rates using Seahorse respirometry in presence or absence of OA. In summary, we uncover a novel mechanism by which glioblastoma escapes to anti-tumor agents through metabolic reprogramming, inducing the synthesis and utilization of LDs as a pro-survival strategy in response to PARP inhibition.

6.
J Hepatol ; 76(5): 1001-1012, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34942286

RESUMO

BACKGROUND & AIMS: Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. METHODS: A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1-/- and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. RESULTS: MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a pro-inflammatory phenotype and the release of cytokines such as TNF-ɑ. Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. CONCLUSIONS: Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Anticorpos Monoclonais , Dieta Hiperlipídica/efeitos adversos , Estudo de Associação Genômica Ampla , Humanos , Inflamação/metabolismo , Lipídeos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
7.
N Engl J Med ; 384(25): 2406-2417, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34161705

RESUMO

BACKGROUND: Autophagy is the major intracellular degradation route in mammalian cells. Systemic ablation of core autophagy-related (ATG) genes in mice leads to embryonic or perinatal lethality, and conditional models show neurodegeneration. Impaired autophagy has been associated with a range of complex human diseases, yet congenital autophagy disorders are rare. METHODS: We performed a genetic, clinical, and neuroimaging analysis involving five families. Mechanistic investigations were conducted with the use of patient-derived fibroblasts, skeletal muscle-biopsy specimens, mouse embryonic fibroblasts, and yeast. RESULTS: We found deleterious, recessive variants in human ATG7, a core autophagy-related gene encoding a protein that is indispensable to classical degradative autophagy. Twelve patients from five families with distinct ATG7 variants had complex neurodevelopmental disorders with brain, muscle, and endocrine involvement. Patients had abnormalities of the cerebellum and corpus callosum and various degrees of facial dysmorphism. These patients have survived with impaired autophagic flux arising from a diminishment or absence of ATG7 protein. Although autophagic sequestration was markedly reduced, evidence of basal autophagy was readily identified in fibroblasts and skeletal muscle with loss of ATG7. Complementation of different model systems by deleterious ATG7 variants resulted in poor or absent autophagic function as compared with the reintroduction of wild-type ATG7. CONCLUSIONS: We identified several patients with a neurodevelopmental disorder who have survived with a severe loss or complete absence of ATG7, an essential effector enzyme for autophagy without a known functional paralogue. (Funded by the Wellcome Centre for Mitochondrial Research and others.).


Assuntos
Anormalidades Múltiplas/genética , Ataxia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/fisiologia , Células Cultivadas , Cerebelo/anormalidades , Simulação por Computador , Face/anormalidades , Feminino , Fibroblastos , Genes Recessivos , Humanos , Lactente , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Malformações do Sistema Nervoso/genética , Linhagem , Fenótipo
9.
Cell Div ; 14: 5, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249607

RESUMO

BACKGROUND: Drugs such as taxanes, epothilones, and vinca alkaloids are widely used in the treatment of breast, ovarian, and lung cancers but come with major side effects such as neuropathy and loss of neutrophils and as single agents have a lack of efficacy. M2I-1 (MAD2 inhibitor-1) has been shown to disrupt the CDC20-MAD2 interaction, and consequently, the assembly of the mitotic checkpoint complex (MCC). RESULTS: We report here that M2I-1 can significantly increase the sensitivity of several cancer cell lines to anti-mitotic drugs, with cell death occurring after a prolonged mitotic arrest. In the presence of nocodazole or taxol combined with M2I-1 cell death is triggered by the premature degradation of Cyclin B1, the perturbation of the microtubule network, and an increase in the level of the pro-apoptotic protein MCL-1s combined with a marginal increase in the level of NOXA. The elevated level of MCL-1s and the marginally increased NOXA antagonized the increased level of MCL-1, a pro-survival protein of the Bcl-2 family. CONCLUSION: Our results provide some important molecular mechanisms for understanding the relationship between the mitotic checkpoint and programmed cell death and demonstrate that M2I-1 exhibits antitumor activity in the presence of current anti-mitotic drugs such as taxol and nocodazole and has the potential to be developed as an anticancer agent.

10.
Cell Metab ; 26(6): 856-871.e5, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29107505

RESUMO

Autophagy failure is associated with metabolic insufficiency. Although caloric restriction (CR) extends healthspan, its adherence in humans is poor. We established an isocaloric twice-a-day (ITAD) feeding model wherein ITAD-fed mice consume the same food amount as ad libitum controls but at two short windows early and late in the diurnal cycle. We hypothesized that ITAD feeding will provide two intervals of intermeal fasting per circadian period and induce autophagy. We show that ITAD feeding modifies circadian autophagy and glucose/lipid metabolism that correlate with feeding-driven changes in circulating insulin. ITAD feeding decreases adiposity and, unlike CR, enhances muscle mass. ITAD feeding drives energy expenditure, lowers lipid levels, suppresses gluconeogenesis, and prevents age/obesity-associated metabolic defects. Using liver-, adipose-, myogenic-, and proopiomelanocortin neuron-specific autophagy-null mice, we mapped the contribution of tissue-specific autophagy to system-wide benefits of ITAD feeding. Our studies suggest that consuming two meals a day without CR could prevent the metabolic syndrome.


Assuntos
Autofagia , Restrição Calórica , Ritmo Circadiano , Jejum , Síndrome Metabólica/prevenção & controle , Adiposidade , Fatores Etários , Animais , Glicemia/análise , Comportamento Alimentar , Feminino , Humanos , Insulina/sangue , Lipídeos/análise , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Desenvolvimento Muscular
11.
Autophagy ; 12(8): 1404-5, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27341145

RESUMO

Autophagy maintains cellular quality control by degrading organelles, and cytosolic proteins and their aggregates in lysosomes. Autophagy also degrades lipid droplets (LD) through a process termed lipophagy. During lipophagy, LD are sequestered within autophagosomes and degraded by lysosomal acid lipases to generate free fatty acids that are ß-oxidized for energy. Lipophagy was discovered in hepatocytes, and since then has been shown to function in diverse cell types. Whether lipophagy degrades LD in the major fat storing cell-the adipocyte-remained unclear. We have found that blocking autophagy in brown adipose tissues (BAT) by deleting the autophagy gene Atg7 in BAT MYF5 (myogenic factor 5)-positive progenitors increases basal lipid content in BAT and decreases lipid utilization during cold exposure-indicating that lipophagy contributes to lipohomeostasis in the adipose tissue. Surprisingly, knocking out Atg7 in hypothalamic proopiomelanocortin (POMC) neurons also blocks lipophagy in BAT and liver suggesting that specific neurons within the central nervous system (CNS) exert telemetric control over lipophagy in BAT and liver.


Assuntos
Autofagossomos/metabolismo , Autofagia , Hepatócitos/metabolismo , Hipotálamo/metabolismo , Metabolismo dos Lipídeos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Proteína 7 Relacionada à Autofagia/metabolismo , Citosol/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Gotículas Lipídicas , Lipídeos/química , Lipólise , Fígado/metabolismo , Lisossomos/metabolismo , Camundongos , Fator Regulador Miogênico 5/metabolismo , Neurônios/metabolismo , Oxigênio/química , Pró-Opiomelanocortina/metabolismo
12.
Biochim Biophys Acta ; 1861(4): 269-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26778751

RESUMO

Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders.


Assuntos
Autofagia , Erros Inatos do Metabolismo Lipídico/metabolismo , Metabolismo dos Lipídeos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Animais , Autofagia/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
13.
J Hepatol ; 64(2): 409-418, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26394163

RESUMO

BACKGROUND & AIMS: Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS: We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS: We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS: These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.


Assuntos
Autofagia/fisiologia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Metionina/sangue , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/sangue , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Humanos , Metilação , Camundongos
14.
Cell Metab ; 23(1): 113-27, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26698918

RESUMO

The integrative physiology of inter-organ communication in lipophagy regulation is not well understood. Lipophagy and the cytosolic lipases ATGL and HSL contribute to lipid droplet (LD) mobilization; however, whether autophagy proteins engage with lipases to promote lipid utilization remains unknown. Here, we show that cold induces autophagy in proopiomelanocortin (POMC) neurons and activates lipophagy in brown adipose tissue (BAT) and liver in mice. Targeted activation of autophagy in POMC neurons via intra-hypothalamic rapamycin is sufficient to trigger lipid utilization in room temperature-housed mice. Conversely, inhibiting autophagy in POMC neurons or in peripheral tissues or denervating BAT blocks lipid utilization. Unexpectedly, the autophagosome marker LC3 is mechanistically coupled to ATGL-mediated lipolysis. ATGL exhibits LC3-interacting region (LIR) motifs, and mutating a single LIR motif on ATGL displaces ATGL from LD and disrupts lipolysis. Thus, cold-induced activation of central autophagy activates lipophagy and cytosolic lipases in a complementary manner to mediate lipolysis in peripheral tissues.


Assuntos
Tecido Adiposo Marrom/metabolismo , Autofagia , Hipotálamo/citologia , Lipólise , Fígado/metabolismo , Adipócitos Marrons/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/inervação , Sequência de Aminoácidos , Animais , Temperatura Baixa , Feminino , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Fígado/citologia , Lisossomos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Neurônios/fisiologia , Consumo de Oxigênio , Pró-Opiomelanocortina/metabolismo
15.
Annu Rev Nutr ; 35: 215-37, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26076903

RESUMO

Autophagy is a conserved quality-control pathway that degrades cytoplasmic contents in lysosomes. Autophagy degrades lipid droplets through a process termed lipophagy. Starvation and an acute lipid stimulus increase autophagic sequestration of lipid droplets and their degradation in lysosomes. Accordingly, liver-specific deletion of the autophagy gene Atg7 increases hepatic fat content, mimicking the human condition termed nonalcoholic fatty liver disease. In this review, we provide insights into the molecular regulation of lipophagy, discuss fundamental questions related to the mechanisms by which autophagosomes recognize lipid droplets and how ATG proteins regulate membrane curvature for lipid droplet sequestration, and comment on the possibility of cross talk between lipophagy and cytosolic lipases in lipid mobilization. Finally, we discuss the contribution of lipophagy to the pathophysiology of human fatty liver disease. Understanding how lipophagy clears hepatocellular lipid droplets could provide new ways to prevent fatty liver disease, a major epidemic in developed nations.


Assuntos
Autofagia/fisiologia , Gotículas Lipídicas , Fígado , Animais , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Deleção de Genes , Hepatócitos/metabolismo , Homeostase , Humanos , Lipase/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fígado/patologia , Fígado/fisiopatologia , Hepatopatias/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Transdução de Sinais , Enzimas Ativadoras de Ubiquitina/genética
16.
Genes Dev ; 29(9): 934-47, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934505

RESUMO

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.


Assuntos
Proteínas Repressoras/genética , Animais , Autofagia/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Longevidade/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , RNA de Transferência/metabolismo , Espermidina/metabolismo
17.
Adv Exp Med Biol ; 847: 73-87, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25916586

RESUMO

Autophagy is a critical quality control pathway that is conserved across diverse systems ranging from simple unicellular organisms like yeast to more complex systems, for instance mammals. Although, the fundamental role of autophagy is to maintain cellular quality control through lysosomal degradation of unwanted proteins and organelles, recent studies have mapped several new functions of this pathway that range from fuel utilization, cellular differentiation to protection against cell death. Given the importance of this pathway in maintaining cellular homeostasis, it has been considered that compromised autophagy could contribute to several of the commonly observed age-associated pathologies including neurodegeneration, reduction of muscle mass, cardiac malfunction, excessive lipid accumulation in tissues and glucose intolerance. The present chapter describes the two best-characterized autophagy pathways­macroautophagy and chaperone-mediated autophagy, and discusses how changes in these pathways associate with age-associated disorders. Understanding how to maintain "clean cells" by activation of autophagy could be an attractive strategy to maintain healthspan in aged individuals.


Assuntos
Envelhecimento , Autofagia , Animais , Humanos , Transdução de Sinais
18.
Autophagy ; 10(3): 535-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24412893

RESUMO

Autophagy maintains cellular homeostasis by sequestering unwanted material within autophagosomes and transferring these to lysosomes for degradation. Several signaling cascades activate or suppress autophagy in response to diverse environmental cues. However, whether autophagic structures per se regulate cell signaling was not known. The MAPK/ERK (mitogen-activated protein kinase) pathway controls several functions in the cell, and studies have identified the importance of scaffold proteins in modulating MAPK signaling through the spatial coordination of the RAF1-MAP2K/MEK-MAPK cascade. Growth factors increase the nuclear localization and activity of MAPK, and since the nucleus has been reported to contain LC3, an autophagy-related protein, we asked whether autophagic structures could serve as cytosolic and nuclear scaffolds for growth factor-induced MAPK phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fagossomos/metabolismo , Animais , Autofagia/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Fagossomos/genética
19.
Nat Commun ; 4: 2799, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24240988

RESUMO

Autophagy is a conserved pathway that maintains cellular quality control. Extracellular signal-regulated kinase (ERK) controls various aspects of cell physiology including proliferation. Multiple signalling cascades, including ERK, have been shown to regulate autophagy, however whether autophagy proteins (ATG) regulate cell signalling is unknown. Here we show that growth factor exposure increases the interaction of ERK cascade components with ATG proteins in the cytosol and nucleus. ERK and its upstream kinase MEK localize to the extra-luminal face of autophagosomes. ERK2 interacts with ATG proteins via its substrate-binding domains. Deleting Atg7 or Atg5 or blocking LC3 lipidation or ATG5-ATG12 conjugation decreases ERK phosphorylation. Conversely, increasing LC3-II availability by silencing the cysteine protease ATG4B or acute trehalose exposure increases ERK phosphorylation. Decreased ERK phosphorylation in Atg5⁻/⁻ cells does not occur from overactive phosphatases. Our findings thus reveal an unconventional function of ATG proteins as cellular scaffolds in the regulation of ERK phosphorylation.


Assuntos
Autofagia/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Regulação para Baixo/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação
20.
EMBO Rep ; 14(9): 795-803, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23907538

RESUMO

Macroautophagy (MA) regulates cellular quality control and energy balance. For example, loss of MA in aP2-positive adipocytes converts white adipose tissue (WAT) into brown adipose tissue (BAT)-like, enhancing BAT function and thereby insulin sensitivity. However, whether MA regulates early BAT development is unknown. We report that deleting Atg7 in myogenic Myf5+ progenitors inhibits MA in Myf5-cell-derived BAT and muscle. Knock out (KO) mice have defective BAT differentiation and function. Surprisingly, their body temperature is higher due to WAT lipolysis-driven increases in fatty acid oxidation in 'Beige' cells in inguinal WAT, BAT and muscle. KO mice also present impaired muscle differentiation, reduced muscle mass and glucose intolerance. Our studies show that ATG7 in Myf5+ progenitors is required to maintain energy and glucose homeostasis through effects on BAT and muscle development. Decreased MA in myogenic progenitors with age and/or overnutrition might contribute to the metabolic defects and sarcopenia observed in these conditions.


Assuntos
Tecido Adiposo Marrom/metabolismo , Autofagia , Metabolismo Energético , Glucose/metabolismo , Homeostase , Músculo Esquelético/metabolismo , Fator Regulador Miogênico 5/metabolismo , Tecido Adiposo Marrom/crescimento & desenvolvimento , Animais , Proteína 7 Relacionada à Autofagia , Diferenciação Celular , Ácidos Graxos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Fator Regulador Miogênico 5/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA