Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38496442

RESUMO

Sepsis-associated encephalopathy (SAE) is a common manifestation in septic patients that is associated with increased risk of long-term cognitive impairment. SAE is driven, at least in part, by brain endothelial dysfunction in response to systemic cytokine signaling. However, the mechanisms driving SAE and its consequences remain largely unknown. Here, we performed translating ribosome affinity purification and RNA-sequencing (TRAP-seq) from the brain endothelium to determine the transcriptional changes after an acute endotoxemic (LPS) challenge. LPS induced a strong acute transcriptional response in the brain endothelium that partially correlates with the whole brain transcriptional response and suggested an endothelial-specific hypoxia response. Consistent with a crucial role for IL-6, loss of the main regulator of this pathway, SOCS3, leads to a broadening of the population of genes responsive to LPS, suggesting that an overactivation of the IL-6/JAK/STAT3 pathway leads to an increased transcriptional response that could explain our prior findings of severe brain injury in these mice. To identify any potential sequelae of this acute response, we performed brain TRAP-seq following a battery of behavioral tests in mice after apparent recovery. We found that the transcriptional response returns to baseline within days post-challenge. Despite the transient nature of the response, we observed that mice that recovered from the endotoxemic shock showed mild, sex-dependent cognitive impairment, suggesting that the acute brain injury led to sustained, non-transcriptional effects. A better understanding of the transcriptional and non-transcriptional changes in response to shock is needed in order to prevent and/or revert the devastating consequences of septic shock.

2.
J Cell Sci ; 136(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37667913

RESUMO

Endothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses. Furthermore, SOCS3 loss leads to an aggravation of the responses, demonstrating a causal role for the STAT3-SOCS3 signaling axis in the acute endothelial response to LPS. Experiments in cultured endothelial cells demonstrate that IL-6 mediates this response. Furthermore, bioinformatics analysis of in vivo and in vitro transcriptomics and epigenetics suggests a role for STAT, AP1 and interferon regulatory family (IRF) transcription factors. Knockdown of STAT3 or the AP1 member JunB partially prevents the changes in gene expression, demonstrating a role for these transcription factors. In conclusion, endothelial cells respond with a coordinated response that depends on overactivated IL-6 signaling via STAT3, JunB and possibly other transcription factors. Our findings provide evidence for a critical role of IL-6 signaling in regulating shock-induced epigenetic changes and sustained endothelial activation, offering a new therapeutic target to limit vascular dysfunction.


Assuntos
Metilação de DNA , Células Endoteliais , Metilação de DNA/genética , Interleucina-6/genética , Lipopolissacarídeos , Endotélio
3.
Am J Physiol Cell Physiol ; 323(2): C556-C569, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816643

RESUMO

Increased circulating levels of soluble interleukin (IL)-6 receptor α (sIL-6Rα) are commonly observed during inflammatory responses, allowing for IL-6 signaling in cells that express the ubiquitous receptor subunit gp130 but not IL-6Rα, such as endothelial cells. Activation of Toll-like receptor (TLR)-4 or the tumor necrosis factor (TNF) receptor leads to NF-κB-dependent increases in endothelial IL-6 expression. Thus, we hypothesize that danger signals may induce autocrine IL-6 signaling within the endothelium via sIL-6Rα-mediated trans-signaling. In support of this hypothesis, we recently demonstrated that conditional deletion in the endothelium of the IL-6 signaling inhibitor SOCS3 leads to rapid mortality in mice challenged with the TLR-4 agonist endotoxin through increases in vascular leakage, thrombosis, leukocyte adhesion, and a type I-like interferon response. Here, we sought to directly test a role for sIL-6Rα in LPS-treated human umbilical vein and dermal blood microvascular endothelial cells. We show that cotreatment with sIL-6Rα dramatically increases the loss of barrier function and the expression of COX2 and tissue factor mRNA levels induced by LPS. This cotreatment led to strong activation of STAT1 and STAT3 while not affecting LPS-induced activation of p38 and NF-κB signaling. Similar results were obtained when sIL-6Rα was added to a TNF challenge. JAK inhibition by pretreatment with ruxolitinib or by SOCS3 overexpression blunted LPS and sIL-6R synergistic effects, whereas SOCS3 knockdown further increased the response. Together, these findings demonstrate that IL-6 signaling downstream of NF-κB activation leads to a strong endothelial activation and may explain the acute endotheliopathy observed during critical illness.


Assuntos
Células Endoteliais , Interleucina-6 , Animais , Células Endoteliais/metabolismo , Endotélio/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
4.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138760

RESUMO

SOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a nonlethal dose of lipopolysaccharide (LPS). SOCS3iEKO mice died 16-24 hours postinjection after severe kidney failure. Loss of SOCS3 led to an LPS-induced type I IFN-like program and high expression of prothrombotic and proadhesive genes. Consistently, we observed intraluminal leukocyte adhesion and neutrophil extracellular trap-osis (NETosis), as well as retinal venular leukoembolization. Notably, heterozygous mice displayed an intermediate phenotype, suggesting a gene dose effect. In vitro studies were performed to study the role of SOCS3 protein levels in the regulation of the inflammatory response. In human umbilical vein endothelial cells, pulse-chase experiments showed that SOCS3 protein had a half-life less than 20 minutes. Inhibition of SOCS3 ubiquitination and proteasomal degradation led to protein accumulation and a stronger inhibition of IL-6 signaling and barrier function loss. Together, our data demonstrate that the regulation of SOCS3 protein levels is critical to inhibit IL-6-mediated endotheliopathy during shock and provide a promising therapeutic avenue to prevent multiorgan dysfunction through stabilization of endothelial SOCS3.


Assuntos
Endotélio Vascular/patologia , Endotoxemia/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/diagnóstico , Endotoxemia/mortalidade , Endotoxemia/patologia , Heterozigoto , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Proteólise , Índice de Gravidade de Doença , Proteína 3 Supressora da Sinalização de Citocinas/análise , Proteína 3 Supressora da Sinalização de Citocinas/genética , Ubiquitinação
5.
Arterioscler Thromb Vasc Biol ; 41(3): 1105-1123, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33406884

RESUMO

OBJECTIVE: Atherosclerosis predominantly forms in regions of oscillatory shear stress while regions of laminar shear stress are protected. This protection is partly through the endothelium in laminar flow regions expressing an anti-inflammatory and antithrombotic gene expression program. Several molecular pathways transmitting these distinct flow patterns to the endothelium have been defined. Our objective is to define the role of the MEF2 (myocyte enhancer factor 2) family of transcription factors in promoting an atheroprotective endothelium. Approach and Results: Here, we show through endothelial-specific deletion of the 3 MEF2 factors in the endothelium, Mef2a, -c, and -d, that MEF2 is a critical regulator of vascular homeostasis. MEF2 deficiency results in systemic inflammation, hemorrhage, thrombocytopenia, leukocytosis, and rapid lethality. Transcriptome analysis reveals that MEF2 is required for normal regulation of 3 pathways implicated in determining the flow responsiveness of the endothelium. Specifically, MEF2 is required for expression of Klf2 and Klf4, 2 partially redundant factors essential for promoting an anti-inflammatory and antithrombotic endothelium. This critical requirement results in phenotypic similarities between endothelial-specific deletions of Mef2a/c/d and Klf2/4. In addition, MEF2 regulates the expression of Notch family genes, Notch1, Dll1, and Jag1, which also promote an atheroprotective endothelium. In contrast to these atheroprotective pathways, MEF2 deficiency upregulates an atherosclerosis promoting pathway through increasing the amount of TAZ (transcriptional coactivator with PDZ-binding motif). CONCLUSIONS: Our results implicate MEF2 as a critical upstream regulator of several transcription factors responsible for gene expression programs that affect development of atherosclerosis and promote an anti-inflammatory and antithrombotic endothelium. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/metabolismo , Endotélio Vascular/metabolismo , Fatores de Transcrição MEF2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Aterosclerose/genética , Aterosclerose/patologia , Endotélio Vascular/patologia , Feminino , Regulação da Expressão Gênica , Homeostase , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição MEF2/deficiência , Fatores de Transcrição MEF2/genética , Masculino , Camundongos , Camundongos Knockout , Receptores Notch/genética , Transdução de Sinais , Transativadores/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R250-R257, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434104

RESUMO

The COVID19 pandemic has caused more than a million of deaths worldwide, primarily due to complications from COVID19-associated acute respiratory distress syndrome (ARDS). Controversy surrounds the circulating cytokine/chemokine profile of COVID19-associated ARDS, with some groups suggesting that it is similar to patients without COVID19 ARDS and others observing substantial differences. Moreover, although a hyperinflammatory phenotype associates with higher mortality in non-COVID19 ARDS, there is little information on the inflammatory landscape's association with mortality in patients with COVID19 ARDS. Even though the circulating leukocytes' transcriptomic signature has been associated with distinct phenotypes and outcomes in critical illness including ARDS, it is unclear whether the mortality-associated inflammatory mediators from patients with COVID19 are transcriptionally regulated in the leukocyte compartment. Here, we conducted a prospective cohort study of 41 mechanically ventilated patients with COVID19 infection using highly calibrated methods to define the levels of plasma cytokines/chemokines and their gene expressions in circulating leukocytes. Plasma IL1RA and IL8 were found positively associated with mortality, whereas RANTES and EGF negatively associated with that outcome. However, the leukocyte gene expression of these proteins had no statistically significant correlation with mortality. These data suggest a unique inflammatory signature associated with severe COVID19.


Assuntos
COVID-19/metabolismo , COVID-19/patologia , Inflamação/metabolismo , Síndrome do Desconforto Respiratório/mortalidade , SARS-CoV-2 , Idoso , COVID-19/mortalidade , Estudos de Coortes , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade
7.
medRxiv ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32511515

RESUMO

The COVID19 pandemic is likely to cause more than a million of deaths worldwide, primarily due to complications from COVID19-associated acute respiratory distress syndrome (ARDS). Controversy surrounds the circulating cytokine/chemokine profile of COVID19-associated ARDS, with some groups suggesting that it is similar to non-COVID19 ARDS patients and others observing substantial differences. Moreover, while a hyperinflammatory phenotype associates with higher mortality in non-COVID19 ARDS, there is little information on the inflammatory landscape's association with mortality in COVID19 ARDS patients. Even though the circulating leukocytes' transcriptomic signature has been associated with distinct phenotypes and outcomes in critical illness including ARDS, it is unclear whether the mortality-associated inflammatory mediators from COVID19 patients are transcriptionally regulated in the leukocyte compartment. Here, we conducted a prospective cohort study of 41 mechanically ventilated patients with COVID19 infection using highly calibrated methods to define the levels of plasma cytokines/chemokines and their gene expressions in circulating leukocytes. Plasma IL1RA and IL8 were found positively associated with mortality while RANTES and EGF negatively associated with that outcome. However, the leukocyte gene expression of these proteins had no statistically significant correlation with mortality. These data suggest a unique inflammatory signature associated with severe COVID19.

8.
Mol Cancer Res ; 18(5): 757-773, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019812

RESUMO

Early sorting endosomes are responsible for the trafficking and function of transferrin receptor (TfR) and EGFR. These receptors play important roles in iron uptake and signaling and are critical for breast cancer development. However, the role of morphology, receptor composition, and signaling of early endosomes in breast cancer remains poorly understood. A novel population of enlarged early endosomes was identified in breast cancer cells and tumor xenografts but not in noncancerous MCF10A cells. Quantitative analysis of endosomal morphology, cargo sorting, EGFR activation, and Rab GTPase regulation was performed using super-resolution and confocal microscopy followed by 3D rendering. MDA-MB-231 breast cancer cells have fewer, but larger EEA1-positive early endosomes compared with MCF10A cells. Live-cell imaging indicated dysregulated cargo sorting, because EGF and Tf traffic together via enlarged endosomes in MDA-MB-231, but not in MCF10A. Large EEA1-positive MDA-MB-231 endosomes exhibited prolonged and increased EGF-induced activation of EGFR upon phosphorylation at tyrosine-1068 (EGFR-p1068). Rab4A overexpression in MCF10A cells produced EEA1-positive enlarged endosomes that displayed prolonged and amplified EGF-induced EGFR-p1068 activation. Knockdown of Rab4A lead to increased endosomal size in MCF10A, but not in MDA-MB-231 cells. Nevertheless, Rab4A knockdown resulted in enhanced EGF-induced activation of EGFR-p1068 in MDA-MB-231 as well as downstream signaling in MCF10A cells. Altogether, this extensive characterization of early endosomes in breast cancer cells has identified a Rab4-modulated enlarged early endosomal compartment as the site of prolonged and increased EGFR activation. IMPLICATIONS: Enlarged early endosomes play a Rab4-modulated role in regulation of EGFR activation in breast cancer cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Endocitose , Regulação Neoplásica da Expressão Gênica , Proteínas rab4 de Ligação ao GTP/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rab4 de Ligação ao GTP/genética
9.
J Neurochem ; 151(2): 255-272, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31032919

RESUMO

Volume-regulated anion channel (VRAC) is a glutamate-permeable channel that is activated by physiological and pathological cell swelling and promotes ischemic brain damage. However, because VRAC opening requires cytosolic ATP, it is not clear if and how its activity is sustained in the metabolically compromised CNS. In the present study, we used cultured astrocytes - the cell type which shows prominent swelling in stroke - to model how metabolic stress and changes in gene expression may impact VRAC function in the ischemic and post-ischemic brain. The metabolic state of primary rat astrocytes was modified with chemical inhibitors and examined using luciferin-luciferase ATP assays and a Seahorse analyzer. Swelling-activated glutamate release was quantified with the radiotracer D-[3 H]aspartate. The specific contribution of VRAC to swelling-activated glutamate efflux was validated by RNAi knockdown of the essential subunit, leucine-rich repeat-containing 8A (LRRC8A); expression levels of VRAC components were measured with qRT-PCR. Using this methodology, we found that complete metabolic inhibition with the glycolysis blocker 2-deoxy-D-glucose and the mitochondrial poison sodium cyanide reduced astrocytic ATP levels by > 90% and abolished glutamate release from swollen cells (via VRAC). When only mitochondrial respiration was inhibited by cyanide or rotenone, the intracellular ATP levels and VRAC activity were largely preserved. Bypassing glycolysis by providing the mitochondrial substrates pyruvate and/or glutamine led to partial recovery of ATP levels and VRAC activity. Unexpectedly, the metabolic block of VRAC was overridden when ATP-depleted cells were exposed to extreme cell swelling (≥ 50% reduction in medium osmolarity). Twenty-four hour anoxic adaptation caused a moderate reduction in the expression levels of the VRAC component LRRC8A, but no significant changes in VRAC activity. Overall, our findings suggest that (i) astrocytic VRAC activity and metabolism can be sustained by low levels of glucose and (ii) the inhibitory influence of diminishing ATP levels and the stimulatory effect of cellular swelling are the two major factors that govern VRAC activity in the ischemic brain.


Assuntos
Astrócitos/metabolismo , Glucose/toxicidade , Ácido Glutâmico/metabolismo , Isquemia/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Feminino , Isquemia/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley
10.
Am J Physiol Cell Physiol ; 314(5): C589-C602, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351406

RESUMO

Vascular leakage is a hallmark of the inflammatory response. Acute changes in endothelial permeability are due to posttranslational changes in intercellular adhesion and cytoskeleton proteins. However, little is known about the mechanisms leading to long-term changes in vascular permeability. Here, we show that interleukin-6 (IL-6) promotes an increase in endothelial monolayer permeability that lasts over 24 h and demonstrate that activation of Src and MEK/ERK pathways is required only for short-term increases in permeability, being dispensable after 2 h. In contrast, Janus kinase (JAK)-mediated STAT3 phosphorylation at Y705 (but not S727) and de novo synthesis of RNA and proteins are required for the sustained permeability increases. Loss of junctional localization of VE-cadherin and ZO-1 is evident several hours after the maximal IL-6 response, thus suggesting that these events are a consequence of IL-6 signaling, but not a cause of the increased permeability. Understanding the mechanisms involved in sustaining vascular permeability may prove crucial to allow us to directly target vascular leakage and minimize tissue damage, thus reducing the rates of mortality and chronic sequelae of excessive edema. Targeting endothelial-specific mechanisms regulating barrier function could provide a new therapeutic strategy to prevent vascular leakage while maintaining the immune response and other beneficial aspects of the inflammatory response that are required for bacterial clearance and tissue repair.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Interleucina-6/farmacologia , Janus Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Cultivadas , Impedância Elétrica , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , MAP Quinase Quinase Quinases/metabolismo , Fosforilação , Transdução de Sinais , Fatores de Tempo , Quinases da Família src/metabolismo
11.
Ophthalmic Plast Reconstr Surg ; 34(2): 110-113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28350690

RESUMO

PURPOSE: The programmed death-1 pathway negatively regulates the immune system. Previous reports have indicated worse tumor-related outcomes with increased expression of the ligand for this pathway. This study was undertaken to assess the role of the PD pathway in cutaneous malignancies that invade the orbit. METHODS: Immunohistochemical staining for the programmed death-1 receptor and ligand was performed on exenteration specimens of invasive cutaneous orbital malignancies (n = 12) and nodular basal cell carcinoma (n = 10). The numbers of positively-staining cells/40× field were counted across 5 consecutive fields, and statistical analyses were performed to compare the differences between the 2 groups. RESULTS: Programmed death-1 receptor positivity was seen in means of 30.9 cells/40× field and 62.4 cells/40× field for nodular basal cell carcinomas and invasive malignancies, respectively (p = 0.0046). A mean of 4.54 cells/40× field stained positively for the programmed death-1 ligand in nodular basal cell carcinoma, whereas a mean of 46.4 cells/40× field stained positively for programmed cell death ligand-1 in orbital invasive cutaneous carcinomas (p = 0.0015). Both of these differences were statistically significant. CONCLUSIONS: Both the programmed death-1 receptor and its ligand are enriched in invasive cutaneous malignancies. This finding indicates that negative regulation of the immune system likely prohibits tumor surveillance, and facilitates increasing aggressiveness and invasion of cutaneous malignancies.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Basocelular/imunologia , Neoplasias Orbitárias/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/imunologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
12.
PLoS One ; 11(9): e0161975, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27603666

RESUMO

Activation of Src Family Kinase (SFK) signaling is required for the increase in endothelial permeability induced by a variety of cytokines and growth factors. However, we previously demonstrated that activation of endogenous SFKs by expression of dominant negative C-terminal Src Kinase (DN-Csk) is not sufficient to decrease endothelial adherens junction integrity. Basal SFK activity has been observed in normal venular endothelia and was not associated with increased basal permeability. The basal SFK activity however was found to contribute to increased sensitivity of the venular endothelium to inflammatory mediator-induced leakage. How SFK activation achieves this is still not well understood. Here, we show that SFK activation renders human dermal microvascular endothelial cells susceptible to low doses of TNF-α. Treatment of DN-Csk-expressing cells with 50 pg/ml TNF-α induced a loss of TEER as well as drastic changes in the actin cytoskeleton and focal adhesion proteins. This synergistic effect was independent of ROCK or NF-κB activity. TNF-α-induced p38 signaling was required for the synergistic effect on barrier function, and activation of the p38 MAPK alone was also able to induce changes in permeability only in monolayers with active SFKs. These results suggest that the activation of endogenous levels of SFK renders the endothelial barrier more susceptible to low, physiologic doses of TNF-α through activation of p38 which leads to a loss of endothelial tight junctions.


Assuntos
Adesão Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Quinases da Família src/genética , Junções Aderentes/efeitos dos fármacos , Proteína Tirosina Quinase CSK , Adesão Celular/genética , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , NF-kappa B/genética , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Quinases da Família src/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA