Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38931815

RESUMO

Most infectious diseases of the gastrointestinal tract can easily be treated by exploiting the already available antibiotics with the change in administration approach and delivery system. Ciprofloxacin (CIP) is used as a drug of choice for many bacterial infections; however, long-term therapy and off-site drug accumulation lead to an increased risk of tendinitis and peripheral neuropathy. To overcome this issue, nanotechnology is being exploited to encapsulate antibiotics within polymeric structures, which not only facilitates dose maintenance at the infection site but also limits off-site side effects. Here, sodium alginate (SA) and thiol-anchored chitosan (TC) were used to encapsulate CIP via a calcium chloride (CaCl2) cross-linker. For this purpose, the B-390 encapsulator was employed in the preparation of nanobeads using a simple technique. The hydrogel-like sample was then freeze-dried, using trehalose or mannitol as a lyoprotectant, to obtain a fine dry powder. Design of Experiment (DoE) was utilized to optimize the nanobead production, in which the influence of different independent variables was studied for their outcome on the polydispersity index (PDI), particle size, zeta potential, and percentage encapsulation efficiency (% EE). In vitro dissolution studies were performed in simulated saliva fluid, simulated gastric fluid, and simulated intestinal fluid. Antibacterial and anti-inflammatory studies were also performed along with cytotoxicity profiling. By and large, the study presented positive outcomes, proving the advantage of using nanotechnology in fabricating new delivery approaches using already available antibiotics.

2.
Gels ; 10(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38920899

RESUMO

The phenols from grape pomace have remarkable beneficial effects on health prevention due to their biological activity, but these are often limited by their bioaccessibility in the gastrointestinal tract. Encapsulation could protect the phenolics during digestion and influence the controlled release in such an intestine where their potential absorption occurs. The influence of freeze-drying encapsulation with sodium alginate (SA) and its combination with gum Arabic (SA-GA) and gelatin (SA-GEL) on the encapsulation efficiency (EE) of phenol-rich grape pomace extract and the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was investigated. The addition of a second coating to SA improved the EE, and the highest EE was obtained with SA-GEL (97.02-98.30%). The release of phenolics followed Fick's law of diffusion and the Korsmeyer-Peppas model best fitted the experimental data. The highest BI was found for the total phenolics (66.2-123.2%) and individual phenolics (epicatechin gallate 958.9%, gallocatechin gallate 987.3%) using the SA-GEL coating were used. This study shows that freeze-dried encapsulated extracts have the potential to be used for the preparation of various formulations containing natural phenolic compounds with the aim of increasing their bioaccessibility compared to formulations containing non-encapsulated extracts.

3.
Foods ; 13(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731717

RESUMO

Both grape pomace and whey are waste products from the food industry that are rich in valuable ingredients. The utilization of these two by-products is becoming increasingly possible as consumer awareness of upcycling increases. The biological activities of grape pomace extract (GPE) are diverse and depend on its bioavailability, which is influenced by processes in the digestive system. In this work, goat whey protein (GW) was used as the primary coating to protect the phenolic compounds of GPE during the spray drying process. In addition, trehalose (T), sucrose (S), xylose (X), and maltodextrin (MD) were added to the goat whey proteins as co-coatings and protein stabilizers. All spray drying experiments resulted in microcapsules (MC) with a high encapsulation efficiency (77.6-95.5%) and yield (91.5-99.0%) and almost 100% recovery of phenolic compounds during the release test. For o-coumaric acid, the GW-coated microcapsules (MC) showed a bioavailability index of up to 731.23%. A semi-crystalline structure and hydrophilicity were characteristics of the MC coated with 10% T, S, X, or 5% MD. GW alone or in combination with T, S, MD, or X proved to be a promising carrier for polyphenols from grape pomace extract and ensured good bioavailability of these natural antioxidants.

4.
Gels ; 9(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37998960

RESUMO

Grape pomace is a byproduct of wineries and a sustainable source of bioactive phenolic compounds. Encapsulation of phenolics with a well-chosen coating may be a promising means of delivering them to the intestine, where they can then be absorbed and exert their health-promoting properties, including antioxidant, anti-inflammatory, anticancer, cardioprotective, and antimicrobial effects. Ionic gelation of grape pomace extract with natural coatings (sodium alginate and its combination with maltodextrins, gelatin, chitosan, gums Tragacanth and Arabic) was performed, and the resulting hydrogel microbeads were then air-, vacuum-, and freeze-dried to prevent spoilage. Freeze-drying showed advantages in preserving the geometrical parameters and morphology of the microbeads compared to other drying techniques. A good relationship was found between the physicochemical properties of the dried microbeads and the in vitro release of phenolics. Freeze-dried microbeads showed the highest cumulative release of phenols in the intestinal phase (23.65-43.27 mgGAE/gMB), while the most suitable release dynamics in vitro were observed for alginate-based microbeads in combination with gelatin, gum Arabic, and 1.5% (w/v) chitosan. The results highlight the importance of developing encapsulated formulations containing a natural source of bioactive compounds that can be used in various functional foods and pharmaceutical products.

5.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446946

RESUMO

Grape pomace is a by-product of winemaking characterized by a rich chemical composition from which phenolics stand out. Phenolics are health-promoting agents, and their beneficial effects depend on their bioaccessibility, which is influenced by gastrointestinal digestion. The effect of encapsulating phenol-rich grape pomace extract (PRE) with sodium alginate (SA), a mixture of SA with gelatin (SA-GEL), and SA with chitosan (SA-CHIT) on the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was studied. A total of 27 individual phenolic compounds (IPCs) were quantified by UHPLC. The addition of a second coating to SA improved the encapsulation efficiency (EE), and the highest EE was obtained for SA-CHIT microbeads (56.25%). Encapsulation affected the physicochemical properties (size, shape and texture, morphology, crystallinity) of the produced microbeads, which influenced the delivery of phenolics to the intestine and their BI. Thus, SA-GEL microbeads had the largest size parameters, as confirmed by scanning electron microscopy (SEM), and the highest BI for total phenolic compounds and IPCs (gallic acid, 3,4-dihydroxybenzoic acid and o-coumaric acid, epicatechin, and gallocatechin gallate) ranged from 96.20 to 1011.3%. The results suggest that encapsulated PRE has great potential to be used as a functional ingredient in products for oral administration.


Assuntos
Fenóis , Extratos Vegetais , Vitis , Alginatos/química , Disponibilidade Biológica , Cápsulas , Cromatografia Líquida de Alta Pressão , Digestão , Gelatina/química , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Fenóis/química , Fenóis/farmacocinética , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Vitis/química , Técnicas In Vitro
6.
Microorganisms ; 11(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37110379

RESUMO

Grape pomace is a sustainable source of bioactive phenolic compounds used in various industries. The recovery of phenolic compounds could be improved by biological pretreatment of grape pomace, as they are released from the lignocellulose structure by the activity of the enzymes produced. The influence of grape pomace pretreatment with Rhizopus oryzae under solid-state conditions (SSF) on the phenolic profile and chemical composition changes was studied. SSF was performed in laboratory jars and in a tray bioreactor for 15 days. Biological pretreatment of grape pomace resulted in an increase in the content of 11 individual phenolic compounds (from 1.1 to 2.5-fold). During SSF, changes in the chemical composition of the grape pomace were observed, including a decrease in ash, protein, and sugar content, and an increase in fat, cellulose, and lignin content. A positive correlation (r > 0.9) was observed between lignolytic enzymes and the hydrolytic enzyme's xylanase and stilbene content. Finally, after 15 days of SSF, a weight loss of GP of 17.6% was observed. The results indicate that SSF under experimental conditions is a sustainable bioprocess for the recovery of phenolic compounds and contributes to the zero-waste concept by reducing waste.

7.
Pharmaceutics ; 15(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36986841

RESUMO

Grape pomace is a byproduct of wineries and a rich source of phenolic compounds that can exert multiple pharmacological effects when consumed and enter the intestine where they can then be absorbed. Phenolic compounds are susceptible to degradation and interaction with other food constituents during digestion, and encapsulation may be a useful technique for protecting phenolic bioactivity and controlling its release. Therefore, the behavior of phenolic-rich grape pomace extracts encapsulated by the ionic gelation method, using a natural coating (sodium alginate, gum arabic, gelatin, and chitosan), was observed during simulated digestion in vitro. The best encapsulation efficiency (69.27%) was obtained with alginate hydrogels. The physicochemical properties of the microbeads were influenced by the coatings used. Scanning electron microscopy showed that drying had the least effect on the surface area of the chitosan-coated microbeads. A structural analysis showed that the structure of the extract changed from crystalline to amorphous after encapsulation. The phenolic compounds were released from the microbeads by Fickian diffusion, which is best described by the Korsmeyer-Peppas model among the four models tested. The obtained results can be used as a predictive tool for the preparation of microbeads containing natural bioactive compounds that could be useful for the development of food supplements.

8.
BMC Complement Med Ther ; 23(1): 29, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726100

RESUMO

BACKGROUND: Colorectal carcinoma is one of the most commonly diagnosed malignancies worldwide. Consumption of dietary supplements and nutraceuticals such as phenolic compounds may help combat colorectal carcinoma. The effect of two phenolic-rich extracts prepared from biotransformed grape pomace on the antioxidant properties and antiproliferative activity against two colorectal cancer cell lines (Caco-2 and SW620) were investigated. METHODS: A 15-day solid-state fermentation with the white-rot fungi Phanerochaete chrysosporium and Trametes gibbosa was used to biotransform grape pomace. Solid-liquid extraction was then performed to extract bioactive compounds. The extract was analyzed for the determination of phenolic compounds by ultra-high performance liquid chromatography and in vitro assays of biological activities (antioxidant activity, antiproliferative activity, cell cycle analysis). RESULTS: The 4 days of solid-state fermentation proved to be the optimal period to obtain the maximum yield of phenolic compounds. The tested extracts showed significant antioxidant and antiproliferative activities. Grape pomace treated with P. chrysosporium and T. gibbosa reduced cancer cell growth by more than 60% at concentrations (solid/liquid ratio) of 1.75 mg/mL and of 2.5 mg/mL, respectively. The cell cycle perturbations induced by the grape pomace extracts resulted in a significant increase in the number of cells in the S (9.8%) and G2/M (6.8%) phases of SW620 exposed to T. gibbosa after 48 hours, while P. chrysosporium increased the percentage of cells in the G1 phase by 7.7%. The effect of grape pomace extracts on Caco-2 was less pronounced. CONCLUSIONS: The obtained results suggest the presence of bioactive compounds in biotransformed grape pomace as a residue from winemaking, which could be used to prevent colon cancer.


Assuntos
Neoplasias Colorretais , Vitis , Humanos , Vitis/química , Antioxidantes/farmacologia , Antioxidantes/análise , Trametes , Células CACO-2 , Frutas/química , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Neoplasias Colorretais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA