RESUMO
This study aimed to determine the effects of diets chronically supplemented with branched-chain amino acids (BCAA) on the fatigue mechanisms of trained rats. Thirty-six adult Wistar rats were trained for six weeks. The training protocol consisted of bouts of swimming exercise (one hour a day, five times a week, for six weeks). The animals received a control diet (C) (n = 12), a diet supplemented with 3.57% BCAA (S1) (n = 12), or a diet supplemented with 4.76% BCAA (S2) (n = 12). On the last day of the training protocol, half the animals in each group were sacrificed after one hour of swimming (1H), and the other half after a swimming exhaustion test (EX). Swimming time until exhaustion was increased by 37% in group S1 and reduced by 43% in group S2 compared to group C. Results indicate that the S1 diet had a beneficial effect on performance by sparing glycogen in the soleus muscle (p < 0.05) and by inducing a lower concentration of plasma ammonia, whereas the S2 diet had a negative effect on performance due to hyperammonemia (p < 0.05). The hypothalamic concentration of serotonin was not significantly different between the 1H and EX conditions. In conclusion, chronic BCAA supplementation led to increased performance in rats subjected to a swimming test to exhaustion. However, this is a dose-dependent effect, since chronic ingestion of elevated quantities of BCAA led to a reduction in performance.
Assuntos
Aminoácidos de Cadeia Ramificada/administração & dosagem , Dieta , Esforço Físico/efeitos dos fármacos , Amônia/sangue , Animais , Relação Dose-Resposta a Droga , Fadiga , Glicogênio/análise , Masculino , Músculo Esquelético/química , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar , NataçãoRESUMO
BACKGROUND: Recent studies show that the expression of inflammatory mediators, such as cytokines, is an important factor for the development and progression of heart failure (HF), especially in the presence of left ventricular dysfunction. These changes have been demonstrated both in the plasma and heart muscle and, more recently, in skeletal muscle of rats and in patients with HF. OBJECTIVE: To investigate the production and expression of tumor necrosis factor-alpha (TNF) and interleukin-10 (IL-10) in the soleus and the extensor digitorum longus (EDL) muscles of animals with left ventricular dysfunction after myocardial infarction (MI). METHODS: We used male Wistar rats that underwent ligation of the left coronary artery without reperfusion. Four weeks after this procedure, the animals underwent echocardiography and were divided into the following experimental groups: sham operated (sham) and IM. They remained under observation for a further period of 8 weeks. RESULTS: The level of the cytokine TNF-alpha increased by 26.5% (p <0.05), and its gene expression increased 3 times (p <0.01). The level of IL-10 decreased by 38.2% (p <0.05). Both changes occurred only in the soleus muscle, with no change in the EDL. The decrease (36.5%, p <0.05) in the IL-10/TNF-alpha ratio was due to both increased tissue levels of TNF-alpha and decreased tissue levels of IL-10. CONCLUSION: Our results showed significant changes in the IL-10/TNF-alpha ratio, which may have an additive role in the assessment of deterioration and progression of left ventricular dysfunction post-MI. Furthermore, our study suggests that these changes seem to be related to the muscle fiber type.
Assuntos
Interleucina-10/biossíntese , Músculo Esquelético/metabolismo , Infarto do Miocárdio/complicações , Fator de Necrose Tumoral alfa/biossíntese , Disfunção Ventricular Esquerda/metabolismo , Animais , Modelos Animais de Doenças , Interleucina-10/genética , Masculino , Modelos Animais , Ratos , Ratos Wistar , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética , Função VentricularRESUMO
BACKGROUND: The effects of chronic aerobic exercise upon lipid profile has been previously demonstrated, but few studies showed this effect under resistance exercise conditions. OBJECTIVE: The aim of this study was to examine the effects of different resistance exercise loads on blood lipids. METHODS: Thirty healthy, untrained male volunteers were allocated randomly into four groups based at different percentages of one repetition maximum (1 RM); 50%-1 RM, 75%-1 RM, 90%-1 RM, and 110%-1 RM. The total volume (sets x reps x load) of the exercise was equalized. The lipid profile (Triglycerides [TG], HDL-cholesterol [HDL-c], LDL-cholesterol, and Total cholesterol) was determined at rest and after 1, 24, 48 and 72 h of resistance exercise. RESULTS: The 75%-1 RM group demonstrated greater TG reduction when compared to other groups (p < 0.05). Additionally, the 110%-1 RM group presented an increased TG concentration when compared to 50% and 75% groups (p = 0.01, p = 0.01, respectively). HDL-c concentration was significantly greater after resistance exercise in 50%-1 RM and 75%-1 RM when compared to 110%-1 RM group (p = 0.004 and p = 0.03, respectively). Accordingly, the 50%-1 RM group had greater HDL-c concentration than 110%-1 RM group after 48 h (p = 0.05) and 72 h (p = 0.004), respectively. Finally, The 50% group has showed lesser LDL-c concentration than 110% group after 24 h (p = 0.007). No significant difference was found in Total Cholesterol concentrations. CONCLUSION: These results indicate that the acute resistance exercise may induce changes in lipid profile in a specific-intensity manner. Overall, low and moderate exercise intensities appear to be promoting more benefits on lipid profile than high intensity. Long term studies should confirm these findings.
RESUMO
This study compared four different intensities of a bench press exercise for muscle soreness, creatine kinase activity, interleukin (IL)-1beta, IL-6, tumor necrosis factor-alpha (TNF-alpha), and prostaglandin E(2) (PGE(2)) concentrations in the blood. Thirty-five male Brazilian Army soldiers were randomly assigned to one of five groups: 50% one-repetition maximum (1-RM), 75% 1-RM, 90% 1-RM, 110% 1-RM, and a control group that did not perform the exercise. The total volume (sets x repetitions x load) of the exercise was matched among the exercise groups. Muscle soreness and plasma creatine kinase activity increased markedly (P < 0.05) after exercise, with no significant differences among the groups. Serum PGE(2) concentration also increased markedly (P < 0.05) after exercise, with a significantly (P < 0.05) greater increase in the 110% 1-RM group compared with the other groups. A weak but significant (P < 0.05) correlation was found between peak muscle soreness and peak PGE(2) concentration, but no significant correlation was evident between peak muscle soreness and peak creatine kinase activity, or peak creatine kinase activity and peak PGE(2) concentration. All groups showed no changes in IL-1beta, IL-6 or TNF-alpha. Our results suggest that the intensity of bench press exercise does not affect the magnitude of muscle soreness and blood markers of muscle damage and inflammation.
Assuntos
Mediadores da Inflamação/fisiologia , Músculo Esquelético/fisiologia , Dor/fisiopatologia , Esforço Físico/fisiologia , Levantamento de Peso/fisiologia , Adolescente , Brasil , Creatina Quinase/sangue , Dinoprostona/sangue , Humanos , Mediadores da Inflamação/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Militares , Dor/diagnóstico , Medição da Dor , Fator de Necrose Tumoral alfa/sangue , Adulto JovemRESUMO
The pineal gland is involved in the regulation of tumour growth through the anticancer activity of melatonin, which presents immunomodulatory, anti-proliferative and anti-oxidant effects. In this study we measured melatonin content directly in the pineal gland, in an attempt to clarify the modulation of pineal melatonin secretory activity during tumour growth. Different groups of Walker 256 carcinosarcoma bearing rats were sacrificed at 12 different time points during 24h (12h:12h light/dark cycle) on different days during the tumour development (on the first, seventh and fourteenth day after tumour inoculation). Melatonin content in the pineal gland was determined by high-performance liquid chromatography with electrochemical detection. During tumour development the amount of melatonin secreted increased from 310.9 ng/mg of protein per day from control animals, to 918.1 ng/mg of protein per day 14 days after tumour implantation, and there were changes in the pineal production profile of melatonin. Cultured pineal glands obtained from tumour-bearing rats turned out to be less responsive to noradrenaline, suggesting the existence, in vivo, of putative factor(s) modulating pineal melatonin production. The results demonstrated that during tumour development there is a modification of pineal melatonin production daily profile, possibly contributing to cachexia, associated to changes in pineal gland response to noradrenaline stimulation.
Assuntos
Carcinoma 256 de Walker/metabolismo , Melatonina/biossíntese , Neoplasias Experimentais/metabolismo , Glândula Pineal/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Ritmo Circadiano/fisiologia , Progressão da Doença , Eletroquímica , Masculino , Melatonina/análise , Técnicas de Cultura de Órgãos , Proteínas/metabolismo , Ratos , Ratos WistarRESUMO
OBJECTIVE: Intense long-duration exercise has been associated with immunosuppression, which affects natural killer cells, lymphokine-activated killer cells, and lymphocytes. The mechanisms involved, however, are not fully determined and seem to be multifactorial, including endocrine changes and alteration of plasma glutamine concentration. Therefore, we evaluated the effect of branched-chain amino acid supplementation on the immune response of triathletes and long-distance runners. METHODS: Peripheral blood was collected prior to and immediately after an Olympic Triathlon or a 30k run. Lymphocyte proliferation, cytokine production by cultured cells, and plasma glutamine were measured. RESULTS: After the exercise bout, athletes from the placebo group presented a decreased plasma glutamine concentration that was abolished by branched-chain amino acid supplementation and an increased proliferative response in their peripheral blood mononuclear cells. Those cells also produced, after exercise, less tumor necrosis factor, interleukins-1 and -4, and interferon and 48% more interleukin-2. Supplementation stimulated the production of interleukin-2 and interferon after exercise and a more pronounced decrease in the production of interleukin-4, indicating a diversion toward a Th1 type immune response. CONCLUSIONS: Our results indicate that branched-chain amino acid (BCAA) supplementation recovers the ability of peripheral blood mononuclear cells proliferate in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The amino acids also modify the pattern of cytokine production leading to a diversion of the immune response toward a Th1 type of immune response.