Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 31(9): 1413-1425, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36264527

RESUMO

Organic ultraviolet (UV) filters have often been detected in aquatic ecosystems in concentrations ranging from ng/L to µg/L. However, both their acute and chronic effects on aquatic organisms have been insufficiently explored. This study aimed to evaluate acute toxicity of some of the main UV filters used worldwide (2-ethylhexyl,4-methoxycinnamate/EHMC, avobenzone/AVO, benzophenone-3/BP-3, and octocrylene/OC), in three aquatic organisms (Artemia salina, Desmodesmus subspicatus, and Daphnia magna), and to further investigate multigenerational effects in D. magna. After acute toxicity was confirmed, daphnids were chronically exposed to environmentally relevant concentrations of UV filters for two consecutive generations (F0 and F1), and reproductive endpoints, as well as catalase (CAT) and glutathione-S-transferase (GST) activities, were assessed. EHMC showed the most toxic potential, with the lowest EC50 values for the three organisms. On the other hand, reproductive delays and a decrease in the reproduction rate were observed in the F1 generation exposed to AVO (4.4 µg/L), BP-3 (0.17 µg/L), EHMC (0.2 µg/L), and MIX. An increase of the CAT activity in organisms exposed to BP-3 and EHMC suggested induction of the antioxidant system. Although no reproductive effect was observed in the first generation, toxic effects obtained in the F1 revealed the importance of multigenerational studies and the potential harm of UV filters to the life cycle of D. magna, even at environmentally relevant concentrations. This emphasizes the need for further studies considering these levels of exposure and more realistic experimental designs to better understand their potential risks. Environmentally relevant concentrations of Organic UV filters are not lethal to aquatic organisms, however may affect reproductive parameters in Daphnia magna though multigenerational exposures.


Assuntos
Daphnia , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Organismos Aquáticos , Reprodução
2.
Photochem Photobiol Sci ; 19(8): 1078-1087, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32618316

RESUMO

Microcystins are a group of cyanotoxins with known hepatotoxic effects, and their presence in drinking water represents a public health concern all over the world. The main objective of this work was to evaluate the solar photo-Fenton process at near-neutral pH in the degradation of microcystin-LR (MC-LR) under conditions close to those found in bloom episodes, with a high concentration of cell debris and natural organic matter (NOM). The influence of experimental parameters such as Fe2+ and H2O2 concentrations, reaction matrix, and the presence of scavenger ions, as well as ecotoxicity before and after treatment, was also evaluated. The reaction matrix was obtained from Microcystis aeruginosa cultivated in ASM-1 medium (ACE1 and ACE2 extracts). H2O2 and Fe2+ concentrations were optimized by 22 factorial design with the central point in a bench-scale solar reactor, using ACE1 extract, and the improved condition was applied in a compound parabolic collector (CPC) reactor, for the ACE2, natural water (RVW) and natural water with M. aeruginosa crude extract (RVCE). Matrix effect assays indicated that radical scavengers present in the medium were responsible for the decrease in the mineralization rates. The solar photo-Fenton process in the CPC reactor achieved COD (75%) and MC-LR (70%) reduction after 120 min at pH = 7.8, [H2O2]/COD = 3.18 and [H2O2]/[Fe2+] = 10 for the ACE2 sample. When the same conditions were applied to the RVCE sample, the process removed 77% of DOC and up to 99% of MC-LR after 45 min of the reaction. Sinapis alba bioassays showed that there was no increase in ecotoxicity after the solar photo-Fenton treatment. These results demonstrate the potential of the solar photo-Fenton process at neutral pH as an additional step in the treatment of natural matrices contaminated with microcystins. In addition, the work reinforces the importance of bioassays in treatment process monitoring.


Assuntos
Compostos Ferrosos/química , Peróxido de Hidrogênio/química , Toxinas Marinhas/química , Microcistinas/química , Luz Solar , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA